Exemplo de implementação do padrão circuit breaker em python

Overview

fast-circuit-breaker

Circuit breakers existem para permitir que uma parte do seu sistema falhe sem destruir todo seu ecossistema de serviços. Michael Nygard

Nesse exemplo vamos executar o serviço de oferta (fria) que se comunica com o serviço de oferta do parceiro (quente). Depois vamos provocar uma indisponibilidade no serviço de oferta do parceiro, retornando uma oferta fria (fallback) do serviço de oferta.

Fluxo de oferta!

Veremos que em certo momento o serviço de oferta deixará de se comunicar com o serviço de oferta do parceiro, abrindo o circuito (open), após um determinado tempo o serviço de oferta continuará tentando restabelecer a comunicação com serviço de oferta do parceiro, circuito meio-aberto (half-open).

Quando a comunicação entre os serviços for restabelecida, o circuito será fechado (close).

Observe abaixo o fluxo de mudança de estado do padrão circuit breaker.

Estados do circuit breaker!

Instalação

Crie um ambiente virtual.

python3 -m venv venv

Ative o ambiente virtual.

source venv/bin/activate

Instale as dependências do projeto.

pip install -r requirements.txt

Uso

Execute o serviço de oferta do parceiro, responsável por retornar uma oferta quente (hot).

python partner_offer_service.py

Execute o serviço de oferta responsável por buscar oferta quente no serviço de oferta do parceiro.

HTTPX_LOG_LEVEL=debug python offer_service.py

Vamos testar a busca de oferta, através de uma chamada HTTP do qualquer cliente (browser, curl, httpie), o exemplo abaixo usa o httpie.

http ":8001/offer"

A resposta deve ser uma oferta quente do serviço de oferta do parceiro.

"Hot offer 24:48"

Veja nos logs do serviço de oferta, a resposta OK do serviço de oferta do parceiro.

DEBUG [2021-06-19 11:03:03] httpx._client - HTTP Request: GET http://127.0.0.1:8000/offer/hot "HTTP/1.1 200 OK"

Circuit breaker

Vamos alterar o arquivo partner_offer_service.py na linha 13 para retornar o código de erro 500 na resposta do recurso GET /offer/hot, conforme exemplo abaixo.

return Response(content=body, status_code=500)

Atenção: os serviços tem a configuração de recarregar (reload) a aplicação toda vez que um arquivo é alterado.

Vamos chamar o serviço de busca de oferta novamente.

http ":8001/offer"

A resposta agora deve ser uma oferta fria, retornada através de uma função (fallback) do serviço de oferta.

"Cold offer fallback 47:32"

Veja nos logs do serviço de oferta um erro na comunicação com o serviço de oferta do parceiro.

DEBUG [2021-06-19 20:44:27] httpx._client - HTTP Request: GET http://127.0.0.1:8000/offer/hot "HTTP/1.1 500 Internal Server Error"

Vamos verificar o estado do circuito do serviço de oferta.

http ":8001/offer/circuit"

A resposta mostra que o circuito está com o estado fechado (current_state) e 1 falha fail_counter.

{
  "current_state": "closed",
  "fail_counter": 1
}

Antes de prosseguirmos vamos analisar a configuração do circuito no arquivo circuit_breaker.py, para mais informações consulte a documentação da biblioteca pybreaker.

  1. fail_max: Quantidade máxima de falhas.
  2. reset_timeout: Limite de tempo (segundos) para redefinição do estado do circuito.
  3. state_storage: Onde o estado será armazenado (Memória, Redis, etc).
  4. listeners: Ouvintes que serão notificados em cada evento do circuito
circuit_breaker = CircuitBreaker(
    fail_max=3,
    reset_timeout=15,
    state_storage=state_storage,
    listeners=[LogListener()]
)

Vamos chamar o recurso de buscar oferta mais 3 vezes.

http ":8001/offer"

Após 3 falhas (fail_max) na comunicação com o serviço de oferta do parceiro, o circuito é aberto (open).

Vamos verificar o estado do circuito mais uma vez.

http ":8001/offer/circuit"

Na resposta o circuito está aberto (current_state) com 3 falhas fail_counter.

{
  "current_state": "open",
  "fail_counter": 3
}

Observe que no estado aberto, não há registro de log de comunicação, pois o circuito protege o serviço de oferta do parceiro de receber chamadas por um determinado período de tempo.

No estado aberto (open), há cada 15 segundos (reset_timeout) o circuito entrará no estado meio-aberto (half-open) para tentar restabelecer a comunicação com o serviço de oferta do parceiro.

Podemos acompanhar (terminal) os eventos do circuito através dos logs da classe LogListener registrada como ouvinte na instancia do circuito.

Antes do circuito invocar a função.
Quando uma invocação de função levanta uma exceção.
Quando o estado do circuito mudou (open).
Quando o estado do circuito mudou (half-open).
Quando o estado do circuito mudou (open).

Caso alteremos o código da resposta do serviço de oferta do parceiro para 200, então o circuito será fechado (close), ou caso a resposta continue com código de erro 500 o circuito continuará aberto.

Owner
James G Silva
Desenvolvedor de software, ajudo pessoas nos primeiros passos da programação.
James G Silva
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
Implementation of Bagging and AdaBoost Algorithm

Bagging-and-AdaBoost Implementation of Bagging and AdaBoost Algorithm Dataset Red Wine Quality Data Sets For simplicity, we will have 2 classes of win

Zechen Ma 1 Nov 01, 2021
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A

Pilhyeon Lee 67 Jan 03, 2023
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
Learn about quantum computing and algorithm on quantum computing

quantum_computing this repo contains everything i learn about quantum computing and algorithm on quantum computing what is aquantum computing quantum

arfy slowy 8 Dec 25, 2022
This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

Hansheng Jiang 6 Nov 18, 2022
Scripts used to make and evaluate OpenAlex's concept tagging model

openalex-concept-tagging This repository contains all of the code for getting the concept tagger up and running. To learn more about where this model

OurResearch 18 Dec 09, 2022
Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression

Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression We provide the code used in our paper "How Good are Low-Rank Approximation

Aristeidis (Ares) Panos 0 Dec 13, 2021
A python script to dump all the challenges locally of a CTFd-based Capture the Flag.

A python script to dump all the challenges locally of a CTFd-based Capture the Flag. Features Connects and logins to a remote CTFd instance. Dumps all

Podalirius 77 Dec 07, 2022
A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

OutliersSlidingWindows A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows" Dataset generatio

PaoloPellizzoni 0 Jan 05, 2022
This is a file about Unet implemented in Pytorch

Unet this is an implemetion of Unet in Pytorch and it's architecture is as follows which is the same with paper of Unet component of Unet Convolution

Dragon 1 Dec 03, 2021
Code for SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021)

SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021) SyncTwin is a treatment effect estimation method tailored for observat

Zhaozhi Qian 3 Nov 03, 2022
RLMeta is a light-weight flexible framework for Distributed Reinforcement Learning Research.

RLMeta rlmeta - a flexible lightweight research framework for Distributed Reinforcement Learning based on PyTorch and moolib Installation To build fro

Meta Research 281 Dec 22, 2022
Multi-Output Gaussian Process Toolkit

Multi-Output Gaussian Process Toolkit Paper - API Documentation - Tutorials & Examples The Multi-Output Gaussian Process Toolkit is a Python toolkit f

GAMES 113 Nov 25, 2022
Applying PVT to Semantic Segmentation

Applying PVT to Semantic Segmentation Here, we take MMSegmentation v0.13.0 as an example, applying PVTv2 to SemanticFPN. For details see Pyramid Visio

35 Nov 30, 2022
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial

Computational Social Affective Neuroscience Laboratory 147 Jan 06, 2023
A Peer-to-peer Platform for Secure, Privacy-preserving, Decentralized Data Science

PyGrid is a peer-to-peer network of data owners and data scientists who can collectively train AI models using PySyft. PyGrid is also the central serv

OpenMined 615 Jan 03, 2023
[PAMI 2020] Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation This repository contains the source code for

Yun-Chun Chen 60 Nov 25, 2022
High dimensional black-box optimizer using Latent Action Monte Carlo Tree Search algorithm

LA-MCTS The code is based of paper Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search. Component LA-MCTS has thr

Meta Research 18 Oct 24, 2022