😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc

Overview

------ Update September 2018 ------

It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such that we can make improvements and design better models in the future.

You can help us achieve this by answering this 4-question Google Form. Thanks for your support!

😇 TorchMoji

Read our blog post about the implementation process here.

TorchMoji is a pyTorch implementation of the DeepMoji model developped by Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad Rahwan and Sune Lehmann.

This model trained on 1.2 billion tweets with emojis to understand how language is used to express emotions. Through transfer learning the model can obtain state-of-the-art performance on many emotion-related text modeling tasks.

Try the online demo of DeepMoji http://deepmoji.mit.edu! See the paper, blog post or FAQ for more details.

Overview

  • torchmoji/ contains all the underlying code needed to convert a dataset to the vocabulary and use the model.
  • examples/ contains short code snippets showing how to convert a dataset to the vocabulary, load up the model and run it on that dataset.
  • scripts/ contains code for processing and analysing datasets to reproduce results in the paper.
  • model/ contains the pretrained model and vocabulary.
  • data/ contains raw and processed datasets that we include in this repository for testing.
  • tests/ contains unit tests for the codebase.

To start out with, have a look inside the examples/ directory. See score_texts_emojis.py for how to use DeepMoji to extract emoji predictions, encode_texts.py for how to convert text into 2304-dimensional emotional feature vectors or finetune_youtube_last.py for how to use the model for transfer learning on a new dataset.

Please consider citing the paper of DeepMoji if you use the model or code (see below for citation).

Installation

We assume that you're using Python 2.7-3.5 with pip installed.

First you need to install pyTorch (version 0.2+), currently by:

conda install pytorch -c pytorch

At the present stage the model can't make efficient use of CUDA. See details in the Hugging Face blog post.

When pyTorch is installed, run the following in the root directory to install the remaining dependencies:

pip install -e .

This will install the following dependencies:

Then, run the download script to downloads the pretrained torchMoji weights (~85MB) from here and put them in the model/ directory:

python scripts/download_weights.py

Testing

To run the tests, install nose. After installing, navigate to the tests/ directory and run:

cd tests
nosetests -v

By default, this will also run finetuning tests. These tests train the model for one epoch and then check the resulting accuracy, which may take several minutes to finish. If you'd prefer to exclude those, run the following instead:

cd tests
nosetests -v -a '!slow'

Disclaimer

This code has been tested to work with Python 2.7 and 3.5 on Ubuntu 16.04 and macOS Sierra machines. It has not been optimized for efficiency, but should be fast enough for most purposes. We do not give any guarantees that there are no bugs - use the code on your own responsibility!

Contributions

We welcome pull requests if you feel like something could be improved. You can also greatly help us by telling us how you felt when writing your most recent tweets. Just click here to contribute.

License

This code and the pretrained model is licensed under the MIT license.

Benchmark datasets

The benchmark datasets are uploaded to this repository for convenience purposes only. They were not released by us and we do not claim any rights on them. Use the datasets at your responsibility and make sure you fulfill the licenses that they were released with. If you use any of the benchmark datasets please consider citing the original authors.

Citation

@inproceedings{felbo2017,
  title={Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm},
  author={Felbo, Bjarke and Mislove, Alan and S{\o}gaard, Anders and Rahwan, Iyad and Lehmann, Sune},
  booktitle={Conference on Empirical Methods in Natural Language Processing (EMNLP)},
  year={2017}
}
Owner
Hugging Face
The AI community building the future.
Hugging Face
Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or columns of a 2d feature map, as a standalone package for Pytorch

Triangle Multiplicative Module - Pytorch Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or c

Phil Wang 22 Oct 28, 2022
render sprites into your desktop environment as shaped windows using GTK

spritegtk render static or animated sprites into your desktop environment as dynamic shaped windows using GTK requires pycairo and PYGobject: pip inst

hermit 20 Oct 27, 2022
YOLOv7 - Framework Beyond Detection

🔥🔥🔥🔥 YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥

JinTian 3k Jan 01, 2023
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
OpenVINO黑客松比赛项目

Window_Guard OpenVINO黑客松比赛项目 英文名称:Window_Guard 中文名称:窗口卫士 硬件 树莓派4B 8G版本 一个磁石开关 USB摄像头(MP4视频文件也可以) 软件(库) OpenVINO RPi 使用方法 本项目使用的OPenVINO是是2021.3版本,并使用了

Tango 6 Jul 04, 2021
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* Any questions or discussions ar

sunshine.lwt 112 Jan 05, 2023
GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

564 Jan 02, 2023
LexGLUE: A Benchmark Dataset for Legal Language Understanding in English

LexGLUE: A Benchmark Dataset for Legal Language Understanding in English ⚖️ 🏆 🧑‍🎓 👩‍⚖️ Dataset Summary Inspired by the recent widespread use of th

95 Dec 08, 2022
Code for the Higgs Boson Machine Learning Challenge organised by CERN & EPFL

A method to solve the Higgs boson challenge using Least Squares - Novae This project is the Project 1 of EPFL CS-433 Machine Learning. The project is

Giacomo Orsi 1 Nov 09, 2021
Only works with the dashboard version / branch of jesse

Jesse optuna Only works with the dashboard version / branch of jesse. The config.yml should be self-explainatory. Installation # install from git pip

Markus K. 8 Dec 04, 2022
This repo includes the supplementary of our paper "CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels"

Supplementary Materials for CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels This repository includes all supplementary mater

Zhiwei Li 0 Jan 05, 2022
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023
Prompts - Read a textfile of prompts and import into anki via ankiconnect

prompts read a textfile of prompts and import into anki via ankiconnect Usage In

Alexander Cobleigh 2 Jul 28, 2022
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
[NeurIPS 2021] Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training Code for NeurIPS 2021 paper "Better Safe Than Sorry: Preventing Delu

Lue Tao 29 Sep 20, 2022
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Active Vision Laboratory 45 Nov 21, 2022
This repository is the official implementation of Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models

Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models Link to paper Abstract We study prediction of future out

Rickard Karlsson 2 Aug 19, 2022
Implementation of Neonatal Seizure Detection using EEG signals for deploying on edge devices including Raspberry Pi.

NeonatalSeizureDetection Description Link: https://arxiv.org/abs/2111.15569 Citation: @misc{nagarajan2021scalable, title={Scalable Machine Learn

Vishal Nagarajan 11 Nov 08, 2022
A PyTorch implementation of the architecture of Mask RCNN

EDIT (AS OF 4th NOVEMBER 2019): This implementation has multiple errors and as of the date 4th, November 2019 is insufficient to be utilized as a reso

Sai Himal Allu 975 Dec 30, 2022