Code for the paper titled "Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks" (NeurIPS 2021 Spotlight).

Related tags

Deep LearningGDWS
Overview

Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks

This repository contains the code and pre-trained models for our paper Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks by Hassan Dbouk and Naresh R. Shanbhag (NeurIPS 2021 Spotlight).

What is GDWS?

Generalized Depthwise-Separable (GDWS) convolutions, as the name suggests, generalize the popular DWS convolutions by allowing for more than one depthwise kernel per input channel as seen below. In our work, we provide efficient and theoretically optimal approximation algorithms that allow us to approximate any standard 2D convolution with a GDWS one. Doing so, we can construct GDWS networks from pre-adversarially trained CNNs in order to dramatically improve the real hardware FPS (measured on an NVIDIA Jetson Xavier) while preserving their robust accuracy. Furthermore, GDWS easily scales to large problem sizes since it operates on pre-trained models and doesn't require any additional training.

Performance Summary

Recent robust pruning works HYDRA and ADMM achieve high compression ratios but either fail to achieve high FPS measured on an NVIDIA Jetson Xavier or compromise significantly on robustness. Furthermore, the overreliance of current robust complexity reduction techniques on adversarial training (AT) increases their training time significantly as shown below. Thus, there is critical need for methods to design deep nets that are both adversarially robust and achieve high throughput when mapped to real hardware. To that end, we:

  • propose GDWS, a novel convolutional structure that can be seamlessly mapped onto off-the-shelf hardware and accelerate pre-trained CNNs significantly while maintaining robust accuracy.
  • show that the error-optimal and complexity-optimal GDWS approximations of any pre-trained standard 2D convolution can be obtained via greedy polynomial time algorithms, thus eliminating the need for any expensive training.
  • apply GDWS to a variety of networks on CIFAR-10, SVHN, and ImageNet to simultaneously achieve higher robustness and higher FPS than existing robust complexity reduction techniques, while incurring no extra training cost.
  • perform thorough experiments using four network architectures on CIFAR-10, SVHN, and Imagenet, and demonstrate the effectiveness of GDWS as it outperforms existing techniques in terms of robustness and throughput (measured in FPS). We also show that model compression is not always the answer when high throughput is required.
  • demonstrate the versatility of GDWS by using it to design efficient CNNs that are robust to union of (l,l2,l1) perturbation models. To the best of our knowledge, this is the first work that proposes efficient and robust networks to the union of norm-bounded perturbation models.

What is in this Repo?

We provide a PyTorch implementation of our GDWS convolutions and our optimal approximation algorithms MEGO and LEGO (algorithms 1 & 2 from our paper). We also provide a modified script from this repo for computing the per-layer weight error vectors alpha (equation (8) from our paper). The code provided can be used to approximate any pre-trained CNN via GDWS convolutions and evaluate its robustness against l-bounded perturbations via eval_robustness.py.

Example

This code was run with the following dependencies, make sure you have the appropriate versions downloaded and installed properly.

python 3.6.9
pytorch 1.0.0
numpy 1.18.1
torchvision 0.2.1
  1. clone the repo: git clone https://github.com/hsndbk4/GDWS.git
  2. make sure the appropriate dataset folders are setup properly (check get_dataloaders in datasets.py)
  3. download a pre-trained pre-activation resnet-18 on CIFAR-10 and its pre-computed weight error vectors alpha from here
  4. place both files in an appropriate folder in the root directory, e.g. outdir_cifar10/preactresnet18

We are now set to run some scripts. First, let us check the natural and robust accuracies of our pre-trained baselines by running the following two commands:

python eval_robustness.py --model preactresnet18 --fname "outdir_cifar10/preactresnet18" --dataset cifar10 --attack none --logfilename a_nat_base.txt
python eval_robustness.py --model preactresnet18 --fname "outdir_cifar10/preactresnet18" --attack-iters 100 --pgd-alpha 1 --dataset cifar10 --epsilon 8 --logfilename a_rob_base.txt

The accuracy numbers will be stored in the appropriate text files in the same folder. Similarly, let us replace the convolutional layers with GDWS ones, using the LEGO algorithm with beta=0.005, and evaluate both the natural and robust accuracies:

python eval_robustness.py --model preactresnet18 --fname "outdir_cifar10/preactresnet18" --dataset cifar10 --attack none --logfilename a_nat_gdws.txt --apply-gdws --alphas-filename alphas.pth --beta 0.005
python eval_robustness.py --model preactresnet18 --fname "outdir_cifar10/preactresnet18" --attack-iters 100 --pgd-alpha 1 --dataset cifar10 --epsilon 8 --logfilename a_rob_gdws.txt --apply-gdws --alphas-filename alphas.pth --beta 0.005

Citation

If you find our work helpful, please consider citing it.

@article{dbouk2021generalized,
  title={Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks},
  author={Dbouk, Hassan and Shanbhag, Naresh R.},
  journal={Advances in Neural Information Processing Systems},
  year={2021}
}

Acknowledgements

This work was supported by the Center for Brain-Inspired Computing (C-BRIC) and the Artificial Intelligence Hardware (AIHW) program funded by the Semiconductor Research Corporation (SRC) and the Defense Advanced Research Projects Agency (DARPA).

Parts of the code in this repository are based on following awesome public repositories:

Owner
Hassan Dbouk
Hassan Dbouk
Code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language"

The repository provides the source code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language" submitted to HA

Sherzod Hakimov 3 Aug 04, 2022
Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields"

NeRF++ Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields" Work with 360 capture of large-scale unbounded scenes. Sup

Kai Zhang 722 Dec 28, 2022
Implementation of SiameseXML (ICML 2021)

SiameseXML Code for SiameseXML: Siamese networks meet extreme classifiers with 100M labels Best Practices for features creation Adding sub-words on to

Extreme Classification 35 Nov 06, 2022
Interactive web apps created using geemap and streamlit

geemap-apps Introduction This repo demostrates how to build a multi-page Earth Engine App using streamlit and geemap. You can deploy the app on variou

Qiusheng Wu 27 Dec 23, 2022
Loopy belief propagation for factor graphs on discrete variables, in JAX!

PGMax implements general factor graphs for discrete probabilistic graphical models (PGMs), and hardware-accelerated differentiable loopy belief propagation (LBP) in JAX.

Vicarious 62 Dec 23, 2022
Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers

Visual Parser (ViP) This is the official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers. Key Feature

Shuyang Sun 117 Dec 11, 2022
CIFAR-10 Photo Classification

Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand

ADITYA SHAH 1 Jan 05, 2022
3D position tracking for soccer players with multi-camera videos

This repo contains a full pipeline to support 3D position tracking of soccer players, with multi-view calibrated moving/fixed video sequences as inputs.

Yuchang Jiang 72 Dec 27, 2022
Explainer for black box models that predict molecule properties

Explaining why that molecule exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help us

White Laboratory 172 Dec 19, 2022
Official pytorch code for "APP: Anytime Progressive Pruning"

APP: Anytime Progressive Pruning Diganta Misra1,2,3, Bharat Runwal2,4, Tianlong Chen5, Zhangyang Wang5, Irina Rish1,3 1 Mila - Quebec AI Institute,2 L

Landskape AI 12 Nov 22, 2022
[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

CPT: Efficient Deep Neural Network Training via Cyclic Precision Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin Accep

26 Oct 25, 2022
Reinforcement Learning for Automated Trading

Reinforcement Learning for Automated Trading This thesis has been realized for the obtention of the Master's in Mathematical Engineering at the Polite

Pierpaolo Necchi 80 Jun 19, 2022
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022
Definition of a business problem according to Wilson Lower Bound Score and Time Based Average Rating

Wilson Lower Bound Score, Time Based Rating Average In this study I tried to calculate the product rating and sorting reviews more accurately. I have

3 Sep 30, 2021
Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord.

numpy2tfrecord Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord. Installation

Ryo Yonetani 2 Jan 16, 2022
The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper.

Intermdiate layer matters - SSL The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper. Downl

Aakash Kaku 35 Sep 19, 2022
Open source Python implementation of the HDR+ photography pipeline

hdrplus-python Open source Python implementation of the HDR+ photography pipeline, originally developped by Google and presented in a 2016 article. Th

77 Jan 05, 2023
Code repository for EMNLP 2021 paper 'Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods'

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods This is the code repository to accompany the EMNLP 2021 paper on ad

Peru Bhardwaj 7 Sep 25, 2022
Microscopy Image Cytometry Toolkit

Cytokit Cytokit is a collection of tools for quantifying and analyzing properties of individual cells in large fluorescent microscopy datasets with a

Hammer Lab 106 Jan 06, 2023
FocusFace: Multi-task Contrastive Learning for Masked Face Recognition

FocusFace This is the official repository of "FocusFace: Multi-task Contrastive Learning for Masked Face Recognition" accepted at IEEE International C

Pedro Neto 21 Nov 17, 2022