Open source Python implementation of the HDR+ photography pipeline

Overview

hdrplus-python

Open source Python implementation of the HDR+ photography pipeline, originally developped by Google and presented in a 2016 article. The finishing pipeline is simplified and of lesser quality than the one described in the original publication.

For an interactive demo and the associated article, An Analysis and Implementation of the HDR+ Burst Denoising Method, check out Image Processing On Line

Note: A C++ / Halide implementation by different authors is available here.

Installation Instructions

All the libraries necessary to run the code are listed in the hdrplus.yml Conda environment file. Simply run

conda env create -f hdrplus.yml

from a command window to install a functional environment.

File Contents and Provided Files

All source code containing algorithm functions is located within the package/algorithm folder, except some optional visualization functions located in package/visualization/vis.py

Scripts to run the algorithm are located at the root of the repo.

Running the Code

Two scripts are provided to either run the algorithm on a single burst (runHdrplus.py) or on a series of bursts all within the same parent folder (runHdrplus_multiple.py).

Examples of use:

python runHdrplus.py -i ./test_data/33TJ_20150606_224837_294 -o ./results_test1 -m full -v 2
python runHdrplus_multiple.py -i ./test_data -o ./results_test2 -m full

You can run the algorithm in three modes (-m command argument):

  • full:
    • required inputs (per burst folder): all raw .dng burst files and a single reference_frame.txt file
    • outputs (per burst folder): 3 .jpg images: final image X_final.jpg + minimally processed versions of the reference and merged image X_reference_gamma.jpg X_merged_gamma.jpg
  • align:
    • required inputs: all raw .dng burst files and a single reference_frame.txt files
    • outputs: a .dng file (copy of the reference image) + 2 numpy files: X_aligned_tiles.npy and X_padding.npy
  • merge:
    • required inputs: (obtained from align mode) a single .dng file (for metadata of the reference image) + 2 numpy files X_aligned_tiles.npy and X_padding.npy
    • outputs: a .dng file (copy of the reference image) + 1 numpy file: X_merged_bayer.npy
  • finish:
    • required inputs: (obtained from merge mode) a single .dng file (for metadata of the reference image) + 1 numpy file (for actual pixel values) X_merged_bayer.npy
    • outputs: final image X_final.jpg You can also change the values of the 'write___' dictionary items in params.py to change the kind of files dumped in each mode (at your own risk).

A helper script for the minimal processing of raw .dng files into .png/.jpg files (e.g. for the visualization of input images) is also included in the code: all_dngs_to_png.py

Test Data

1 burst can be found in the test_data folder (each burst being in its own subfolder) Feel free to add your own data. The structure of a burst folder must be the following:

  • the burst name is specified by the name of the folder itself
  • burst images must be stored as .dng files (most proprietary raw images formats can be turned to DNG using Adobe DNG Converter
  • image files must be named the following way: commonpart<X>.dng, where <X> gives an indication of the frame number (eg payload_N000.dng, payload_N001.dng / G0140178.dng, G0140179.dng)
  • you can specify the reference frame by putting a zero-indexed number inside a reference_frame.txt file (i.e. 0 for the 1st frame)

Additional data can be downloaded via the following links:

COPYRIGHT AND LICENSE INFORMATION

Copyright (c) 2021 Antoine Monod

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License along with this program. If not, see http://www.gnu.org/licenses/.

This file implements an algorithm possibly linked to the patent US9077913B2. This file is made available for the exclusive aim of serving as scientific tool to verify the soundness and completeness of the algorithm description. Compilation, execution and redistribution of this file may violate patents rights in certain countries. The situation being different for every country and changing over time, it is your responsibility to determine which patent rights restrictions apply to you before you compile, use, modify, or redistribute this file. A patent lawyer is qualified to make this determination. If and only if they don't conflict with any patent terms, you can benefit from the following license terms attached to this file.

Owner
PhD Student in applied mathematics (image processing, deep learning)
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts (ICLR 2022)

MetaShift: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts This repo provides the PyTorch source code of our paper: Me

88 Jan 04, 2023
Bu repo SAHI uygulamasını mantığını öğreniyoruz.

SAHI-Learn: SAHI'den Beraber Kodlamak İster Misiniz Herkese merhabalar ben Kadir Nar. SAHI kütüphanesine gönüllü geliştiriciyim. Bu repo SAHI kütüphan

Kadir Nar 11 Aug 22, 2022
AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023
Reading Group @mila-iqia on Computational Optimal Transport for Machine Learning Applications

Computational Optimal Transport for Machine Learning Reading Group Over the last few years, optimal transport (OT) has quickly become a central topic

Ali Harakeh 11 Aug 26, 2022
This is the latest version of the PULP SDK

PULP-SDK This is the latest version of the PULP SDK, which is under active development. The previous (now legacy) version, which is no longer supporte

78 Dec 07, 2022
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
Serving PyTorch 1.0 Models as a Web Server in C++

Serving PyTorch Models in C++ This repository contains various examples to perform inference using PyTorch C++ API. Run git clone https://github.com/W

Onur Kaplan 223 Jan 04, 2023
Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.

TradingGym TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated th

Yvictor 1.1k Jan 02, 2023
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative

NVIDIA Research Projects 2.9k Dec 28, 2022
Differentiable scientific computing library

xitorch: differentiable scientific computing library xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely

98 Dec 26, 2022
DA2Lite is an automated model compression toolkit for PyTorch.

DA2Lite (Deep Architecture to Lite) is a toolkit to compress and accelerate deep network models. ⭐ Star us on GitHub — it helps!! Frameworks & Librari

Sinhan Kang 7 Mar 22, 2022
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

The official code for the NeurIPS 2021 paper Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

13 Dec 22, 2022
Training BERT with Compute/Time (Academic) Budget

Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time

Intel Labs 263 Jan 07, 2023
Some pvbatch (paraview) scripts for postprocessing OpenFOAM data

pvbatchForFoam Some pvbatch (paraview) scripts for postprocessing OpenFOAM data For every script there is a help message available: pvbatch pv_state_s

Morev Ilya 2 Oct 26, 2022
Code release for Universal Domain Adaptation(CVPR 2019)

Universal Domain Adaptation Code release for Universal Domain Adaptation(CVPR 2019) Requirements python 3.6+ PyTorch 1.0 pip install -r requirements.t

THUML @ Tsinghua University 229 Dec 23, 2022
Rohit Ingole 2 Mar 24, 2022
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
Segmentation Training Pipeline

Segmentation Training Pipeline This package is a part of Musket ML framework. Reasons to use Segmentation Pipeline Segmentation Pipeline was developed

Musket ML 52 Dec 12, 2022
Deep learning for Engineers - Physics Informed Deep Learning

SciANN: Neural Networks for Scientific Computations SciANN is a Keras wrapper for scientific computations and physics-informed deep learning. New to S

SciANN 195 Jan 03, 2023
TimeSHAP explains Recurrent Neural Network predictions.

TimeSHAP TimeSHAP is a model-agnostic, recurrent explainer that builds upon KernelSHAP and extends it to the sequential domain. TimeSHAP computes even

Feedzai 90 Dec 18, 2022