A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Overview

Semantic Meshes

A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Build License: MIT

Paper

If you find this framework useful in your research, please consider citing: [arxiv]

@misc{fervers2021improving,
      title={Improving Semantic Image Segmentation via Label Fusion in Semantically Textured Meshes},
      author={Florian Fervers, Timo Breuer, Gregor Stachowiak, Sebastian Bullinger, Christoph Bodensteiner, Michael Arens},
      year={2021},
      eprint={2111.11103},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Workflow

  1. Reconstruct a mesh of your scene from a set of images (e.g. using Colmap).
  2. Send all undistorted images through your segmentation model (e.g. from tfcv or image-segmentation-keras) to produce 2D semantic annotation images.
  3. Project all 2D annotations into the 3D mesh and fuse conflicting predictions.
  4. Render the annotated mesh from original camera poses to produce new 2D consistent annotation images, or save it as a colorized ply file.

Example output for a traffic scene with annotations produced by a model that was trained on Cityscapes:

view1 view2

Usage

We provide a python interface that enables easy integration with numpy and machine learning frameworks like Tensorflow. A full example script is provided in colorize_cityscapes_mesh.py that annotates a mesh using a segmentation model that was pretrained on Cityscapes. The model is downloaded automatically and the prediction peformed on-the-fly.

import semantic_meshes

...

# Load a mesh from ply file
mesh = semantic_meshes.data.Ply(args.input_ply)
# Instantiate a triangle renderer for the mesh
renderer = semantic_meshes.render.triangles(mesh)
# Load colmap workspace for camera poses
colmap_workspace = semantic_meshes.data.Colmap(args.colmap)
# Instantiate an aggregator for aggregating the 2D input annotations per 3D primitive
aggregator = semantic_meshes.fusion.MeshAggregator(primitives=renderer.getPrimitivesNum(), classes=19)

...

# Process all input images
for image_file in image_files:
    # Load image from file
    image = imageio.imread(image_file)
    ...
    # Predict class probability distributions for all pixels in the input image
    prediction = predictor(image)
    ...
    # Render the mesh from the pose of the given image
    # This returns an image that contains the index of the projected mesh primitive per pixel
    primitive_indices, _ = renderer.render(colmap_workspace.getCamera(image_file))
    ...
    # Aggregate the class probability distributions of all pixels per primitive
    aggregator.add(primitive_indices, prediction)

# After all images have been processed, the mesh contains a consistent semantic representation of the environment
aggregator.get() # Returns an array that contains the class probability distribution for each primitive

...

# Save colorized mesh to ply
mesh.save(args.output_ply, primitive_colors)

Docker

If you want to skip installation and jump right in, we provide a docker file that can be used without any further steps. Otherwise, see Installation.

  1. Install docker and gpu support
  2. Build the docker image: docker build -t semantic-meshes https://github.com/fferflo/semantic-meshes.git#master
    • If your system is using a proxy, add: --build-arg HTTP_PROXY=... --build-arg HTTPS_PROXY=...
  3. Open a command prompt in the docker image and mount a folder from your host system (HOST_PATH) that contains your colmap workspace into the docker image (DOCKER_PATH): docker run -v /HOST_PATH:/DOCKER_PATH --gpus all -it semantic-meshes bash
  4. Run the provided example script inside the docker image to annotate the mesh with Cityscapes annotations: colorize_cityscapes_mesh.py --colmap /DOCKER_PATH/colmap/dense/sparse --input_ply /DOCKER_PATH/colmap/dense/meshed-delaunay.ply --images /DOCKER_PATH/colmap/dense/images --output_ply /DOCKER_PATH/colorized_mesh.ply

Running the repository inside a docker image is significantly slower than running it in the host system (12sec/image vs 2sec/image on RTX 6000).

Installation

Dependencies

  • CUDA: https://developer.nvidia.com/cuda-downloads
  • OpenMP: On Ubuntu: sudo apt install libomp-dev
  • Python 3
  • Boost: Requires the python and numpy components of the Boost library, which have to be compiled for the python version that you are using. If you're lucky, your OS ships compatible Boost and Python3 versions. Otherwise, compile boost from source and make sure to include the --with-python=python3 switch.

Build

The repository contains CMake code that builds the project and provides a python package in the build folder that can be installed using pip.

CMake downloads, builds and installs all other dependencies automatically. If you don't want to clutter your global system directories, add -DCMAKE_INSTALL_PREFIX=... to install to a local directory.

The framework has to be compiled for specific number of classes (e.g. 19 for Cityscapes, or 2 for a binary segmentation). Add a semicolon-separated list with -DCLASSES_NUMS=2;19;... for all number of classes that you want to use. A longer list will significantly increase the compilation time.

An example build:

git clone https://github.com/fferflo/semantic-meshes
cd semantic-meshes
mkdir build
mkdir install
cd build
cmake -DCMAKE_INSTALL_PREFIX=../install -DCLASSES_NUMS=19 ..
make -j8
make install # Installs to the local install directory
pip install ./python

Build with incompatible Boost or Python versions

Alternatively, in case your OS versions of Boost or Python do not match the version requirements of semantic-meshes, we provide an installation script that also fetches and locally installs compatible versions of these dependencies: install.sh. Since the script builds python from source, make sure to first install all optional Python dependencies that you require (see e.g. https://github.com/python/cpython/blob/main/.github/workflows/posix-deps-apt.sh).

Owner
Florian
Florian
Code for CVPR 2021 oral paper "Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts"

Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts The rapid progress in 3D scene understanding has come with growing dem

Facebook Research 182 Dec 30, 2022
Repo for FUZE project. I will also publish some Linux kernel LPE exploits for various real world kernel vulnerabilities here. the samples are uploaded for education purposes for red and blue teams.

Linux_kernel_exploits Some Linux kernel exploits for various real world kernel vulnerabilities here. More exploits are yet to come. This repo contains

Wei Wu 472 Dec 21, 2022
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Sta

Charles R. Qi 4k Dec 30, 2022
Node-level Graph Regression with Deep Gaussian Process Models

Node-level Graph Regression with Deep Gaussian Process Models Prerequests our implementation is mainly based on tensorflow 1.x and gpflow 1.x: python

1 Jan 16, 2022
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

Zhiqiang Shen 16 Nov 04, 2020
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022
Reference implementation for Structured Prediction with Deep Value Networks

Deep Value Network (DVN) This code is a python reference implementation of DVNs introduced in Deep Value Networks Learn to Evaluate and Iteratively Re

Michael Gygli 55 Feb 02, 2022
Tracking Progress in Question Answering over Knowledge Graphs

Tracking Progress in Question Answering over Knowledge Graphs Table of contents Question Answering Systems with Descriptions The QA Systems Table cont

Knowledge Graph Question Answering 47 Jan 02, 2023
PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation

PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation The paper: https://arxiv.org/abs/1704.03296 What makes

Jacob Gildenblat 322 Dec 17, 2022
Bayesian dessert for Lasagne

Gelato Bayesian dessert for Lasagne Recent results in Bayesian statistics for constructing robust neural networks have proved that it is one of the be

Maxim Kochurov 84 May 11, 2020
This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

BMW Semantic Segmentation GPU/CPU Inference API This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit. The train

BMW TechOffice MUNICH 56 Nov 24, 2022
My published benchmark for a Kaggle Simulations Competition

Lux AI Working Title Bot Please refer to the Kaggle notebook for the comment section. The comment section contains my explanation on my code structure

Tong Hui Kang 29 Aug 22, 2022
an implementation of 3D Ken Burns Effect from a Single Image using PyTorch

3d-ken-burns This is a reference implementation of 3D Ken Burns Effect from a Single Image [1] using PyTorch. Given a single input image, it animates

Simon Niklaus 1.4k Dec 28, 2022
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen

Egor Burkov 515 Dec 18, 2022
This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Orientation independent Möbius CNNs This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of

Maurice Weiler 59 Dec 09, 2022
QuadTree Attention for Vision Transformers (ICLR2022)

This repository contains codes for quadtree attention. This repo contains codes for feature matching, image classficiation, object detection and seman

tangshitao 222 Dec 28, 2022
Embeds a story into a music playlist by sorting the playlist so that the order of the music follows a narrative arc.

playlist-story-builder This project attempts to embed a story into a music playlist by sorting the playlist so that the order of the music follows a n

Dylan R. Ashley 0 Oct 28, 2021
[IEEE TPAMI21] MobileSal: Extremely Efficient RGB-D Salient Object Detection [PyTorch & Jittor]

MobileSal IEEE TPAMI 2021: MobileSal: Extremely Efficient RGB-D Salient Object Detection This repository contains full training & testing code, and pr

Yu-Huan Wu 52 Jan 06, 2023
Neural Fixed-Point Acceleration for Convex Optimization

Licensing The majority of neural-scs is licensed under the CC BY-NC 4.0 License, however, portions of the project are available under separate license

Facebook Research 27 Oct 06, 2022
Matching python environment code for Lux AI 2021 Kaggle competition, and a gym interface for RL models.

Lux AI 2021 python game engine and gym This is a replica of the Lux AI 2021 game ported directly over to python. It also sets up a classic Reinforceme

Geoff McDonald 74 Nov 03, 2022