A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Overview

Semantic Meshes

A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Build License: MIT

Paper

If you find this framework useful in your research, please consider citing: [arxiv]

@misc{fervers2021improving,
      title={Improving Semantic Image Segmentation via Label Fusion in Semantically Textured Meshes},
      author={Florian Fervers, Timo Breuer, Gregor Stachowiak, Sebastian Bullinger, Christoph Bodensteiner, Michael Arens},
      year={2021},
      eprint={2111.11103},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Workflow

  1. Reconstruct a mesh of your scene from a set of images (e.g. using Colmap).
  2. Send all undistorted images through your segmentation model (e.g. from tfcv or image-segmentation-keras) to produce 2D semantic annotation images.
  3. Project all 2D annotations into the 3D mesh and fuse conflicting predictions.
  4. Render the annotated mesh from original camera poses to produce new 2D consistent annotation images, or save it as a colorized ply file.

Example output for a traffic scene with annotations produced by a model that was trained on Cityscapes:

view1 view2

Usage

We provide a python interface that enables easy integration with numpy and machine learning frameworks like Tensorflow. A full example script is provided in colorize_cityscapes_mesh.py that annotates a mesh using a segmentation model that was pretrained on Cityscapes. The model is downloaded automatically and the prediction peformed on-the-fly.

import semantic_meshes

...

# Load a mesh from ply file
mesh = semantic_meshes.data.Ply(args.input_ply)
# Instantiate a triangle renderer for the mesh
renderer = semantic_meshes.render.triangles(mesh)
# Load colmap workspace for camera poses
colmap_workspace = semantic_meshes.data.Colmap(args.colmap)
# Instantiate an aggregator for aggregating the 2D input annotations per 3D primitive
aggregator = semantic_meshes.fusion.MeshAggregator(primitives=renderer.getPrimitivesNum(), classes=19)

...

# Process all input images
for image_file in image_files:
    # Load image from file
    image = imageio.imread(image_file)
    ...
    # Predict class probability distributions for all pixels in the input image
    prediction = predictor(image)
    ...
    # Render the mesh from the pose of the given image
    # This returns an image that contains the index of the projected mesh primitive per pixel
    primitive_indices, _ = renderer.render(colmap_workspace.getCamera(image_file))
    ...
    # Aggregate the class probability distributions of all pixels per primitive
    aggregator.add(primitive_indices, prediction)

# After all images have been processed, the mesh contains a consistent semantic representation of the environment
aggregator.get() # Returns an array that contains the class probability distribution for each primitive

...

# Save colorized mesh to ply
mesh.save(args.output_ply, primitive_colors)

Docker

If you want to skip installation and jump right in, we provide a docker file that can be used without any further steps. Otherwise, see Installation.

  1. Install docker and gpu support
  2. Build the docker image: docker build -t semantic-meshes https://github.com/fferflo/semantic-meshes.git#master
    • If your system is using a proxy, add: --build-arg HTTP_PROXY=... --build-arg HTTPS_PROXY=...
  3. Open a command prompt in the docker image and mount a folder from your host system (HOST_PATH) that contains your colmap workspace into the docker image (DOCKER_PATH): docker run -v /HOST_PATH:/DOCKER_PATH --gpus all -it semantic-meshes bash
  4. Run the provided example script inside the docker image to annotate the mesh with Cityscapes annotations: colorize_cityscapes_mesh.py --colmap /DOCKER_PATH/colmap/dense/sparse --input_ply /DOCKER_PATH/colmap/dense/meshed-delaunay.ply --images /DOCKER_PATH/colmap/dense/images --output_ply /DOCKER_PATH/colorized_mesh.ply

Running the repository inside a docker image is significantly slower than running it in the host system (12sec/image vs 2sec/image on RTX 6000).

Installation

Dependencies

  • CUDA: https://developer.nvidia.com/cuda-downloads
  • OpenMP: On Ubuntu: sudo apt install libomp-dev
  • Python 3
  • Boost: Requires the python and numpy components of the Boost library, which have to be compiled for the python version that you are using. If you're lucky, your OS ships compatible Boost and Python3 versions. Otherwise, compile boost from source and make sure to include the --with-python=python3 switch.

Build

The repository contains CMake code that builds the project and provides a python package in the build folder that can be installed using pip.

CMake downloads, builds and installs all other dependencies automatically. If you don't want to clutter your global system directories, add -DCMAKE_INSTALL_PREFIX=... to install to a local directory.

The framework has to be compiled for specific number of classes (e.g. 19 for Cityscapes, or 2 for a binary segmentation). Add a semicolon-separated list with -DCLASSES_NUMS=2;19;... for all number of classes that you want to use. A longer list will significantly increase the compilation time.

An example build:

git clone https://github.com/fferflo/semantic-meshes
cd semantic-meshes
mkdir build
mkdir install
cd build
cmake -DCMAKE_INSTALL_PREFIX=../install -DCLASSES_NUMS=19 ..
make -j8
make install # Installs to the local install directory
pip install ./python

Build with incompatible Boost or Python versions

Alternatively, in case your OS versions of Boost or Python do not match the version requirements of semantic-meshes, we provide an installation script that also fetches and locally installs compatible versions of these dependencies: install.sh. Since the script builds python from source, make sure to first install all optional Python dependencies that you require (see e.g. https://github.com/python/cpython/blob/main/.github/workflows/posix-deps-apt.sh).

Owner
Florian
Florian
Machine Learning Time-Series Platform

cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s

632 Dec 26, 2022
Intro-to-dl - Resources for "Introduction to Deep Learning" course.

Introduction to Deep Learning course resources https://www.coursera.org/learn/intro-to-deep-learning Running on Google Colab (tested for all weeks) Go

Advanced Machine Learning specialisation by HSE 761 Dec 24, 2022
Studying Python release adoptions by looking at PyPI downloads

Analysis of version adoptions on PyPI We get PyPI download statistics via Google's BigQuery using the pypinfo tool. Usage First you need to get an acc

Julien Palard 9 Nov 04, 2022
Simulation-based inference for the Galactic Center Excess

Simulation-based inference for the Galactic Center Excess Siddharth Mishra-Sharma and Kyle Cranmer Abstract The nature of the Fermi gamma-ray Galactic

Siddharth Mishra-Sharma 3 Jan 21, 2022
A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild"

VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video

45 Nov 29, 2022
Mixup for Supervision, Semi- and Self-Supervision Learning Toolbox and Benchmark

OpenSelfSup News Downstream tasks now support more methods(Mask RCNN-FPN, RetinaNet, Keypoints RCNN) and more datasets(Cityscapes). 'GaussianBlur' is

AI Lab, Westlake University 332 Jan 03, 2023
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
Reference implementation for Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Diffusion Probabilistic Models This repository provides a reference implementation of the method described in the paper: Deep Unsupervised Learning us

Jascha Sohl-Dickstein 238 Jan 02, 2023
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
Plotting points that lie on the intersection of the given curves using gradient descent.

Plotting intersection of curves using gradient descent Webapp Link --- What's the app about Why this app Plotting functions and their intersection. A

Divakar Verma 2 Jan 09, 2022
上海交通大学全自动抢课脚本,支持准点开抢与抢课后持续捡漏两种模式。2021/06/08更新。

Welcome to Course-Bullying-in-SJTU-v3.1! 2021/6/8 紧急更新v3.1 更新说明 为了更好地保护用户隐私,将原来用户名+密码的登录方式改为微信扫二维码+cookie登录方式,不再需要配置使用pytesseract。在使用扫码登录模式时,请稍等,二维码将马

87 Sep 13, 2022
Learning To Have An Ear For Face Super-Resolution

Learning To Have An Ear For Face Super-Resolution [Project Page] This repository contains demo code of our CVPR2020 paper. Training and evaluation on

50 Nov 16, 2022
Deep Convolutional Generative Adversarial Networks

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec Radford, Luke Metz, Soumith Chintala All images in t

Alec Radford 3.4k Dec 29, 2022
[BMVC2021] "TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation"

TransFusion-Pose TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation Haoyu Ma, Liangjian Chen, Deying Kong, Zhe Wang, Xingwei

Haoyu Ma 29 Dec 23, 2022
Meaningful titles for tabs and PDF downloads! Also supports tab search.

arxiv-utils If you are a researcher that reads a lot on ArXiv, you'll benefit a lot from this web extension. Renames the title of PDF page to the pape

Johnson 174 Dec 20, 2022
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022
Pytorch implementation of Compressive Transformers, from Deepmind

Compressive Transformer in Pytorch Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-ran

Phil Wang 118 Dec 01, 2022
A scikit-learn-compatible module for estimating prediction intervals.

|Anaconda|_ MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals using your favourite sklearn

SimAI 584 Dec 27, 2022
Pywonderland - A tour in the wonderland of math with python.

A Tour in the Wonderland of Math with Python A collection of python scripts for drawing beautiful figures and animating interesting algorithms in math

Zhao Liang 4.1k Jan 03, 2023
Torch code for our CVPR 2018 paper "Residual Dense Network for Image Super-Resolution" (Spotlight)

Residual Dense Network for Image Super-Resolution This repository is for RDN introduced in the following paper Yulun Zhang, Yapeng Tian, Yu Kong, Bine

Yulun Zhang 494 Dec 30, 2022