CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability

Overview

This is the official repository of the paper:

CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability


A private copy of the paper is available under CR-FIQA


CR-FIQA training

  1. In the paper, we employ MS1MV2 as the training dataset for CR-FIQA(L) which can be downloaded from InsightFace (MS1M-ArcFace in DataZoo)
    1. Download MS1MV2 dataset from insightface on strictly follow the licence distribution
  2. We use CASIA-WebFace as the training dataset for CR-FIQA(S) which can be downloaded from InsightFace (CASIA in DataZoo)
    1. Download CASIA dataset from insightface on strictly follow the licence distribution
  3. Unzip the dataset and place it in the data folder
  4. Intall the requirement from requirement.txt
  5. pip install -r requirements.txt
  6. All code are trained and tested using PyTorch 1.7.1 Details are under (Torch)[https://pytorch.org/get-started/locally/]

CR-FIQA(L)

Set the following in the config.py

  1. config.output to output dir
  2. config.network = "iresnet100"
  3. config.dataset = "emoreIresNet"
  4. Run ./run.sh

CR-FIQA(S)

Set the following in the config.py

  1. config.output to output dir
  2. config.network = "iresnet50"
  3. config.dataset = "webface"
  4. Run ./run.sh

Pretrained model

CR-FIQA(L)

CR-FIQA(S)

Evaluation

Follow these steps to reproduce the results on XQLFW:

  1. Download the XQLFW (please download xqlfw_aligned_112.zip)
  2. Unzip XQLFW (Folder structure should look like this ./data/XQLFW/xqlfw_aligned_112/)
  3. Download also xqlfw_pairs.txt to ./data/XQLFW/xqlfw_pairs.txt
  4. Set (in feature_extraction/extract_xqlfw.py) path = "./data/XQLFW" to your XQLFW data folder and outpath = "./data/quality_data" where you want to save the preprocessed data
  5. Run python extract_xqlfw.py (it creates the output folder, saves the images in BGR format, creates image_path_list.txt and pair_list.txt)
  6. Run evaluation/getQualityScore.py to estimate the quality scores
    1. CR-FIQA(L)
      1. Download the pretrained model
      2. run: python3 evaluation/getQualityScorce.py --data_dir "./data/quality_data" --datasets "XQLFW" --model_path "path_to_pretrained_CF_FIQAL_model" --backbone "iresnet100" --model_id "181952" --score_file_name "CRFIQAL.txt"
    2. CR-FIQA(S)
      1. Download the pretrained model
      2. run: python3 evaluation/getQualityScorce.py --data_dir "./data/quality_data" --datasets "XQLFW" --model_path "path_to_pretrained_CF_FIQAL_model" --backbone "iresnet50" --model_id "32572" --score_file_name "CRFIQAS.txt"

The quality score of LFW, AgeDB-30, CFP-FP, CALFW, CPLFW can be produced by following these steps:

  1. LFW, AgeDB-30, CFP-FP, CALFW, CPLFW are be included in the training dataset folder insightface
  2. Set (in extract_bin.py) path = "/data/faces_emore/lfw.bin" to your LFW bin file and outpath = "./data/quality_data" where you want to save the preprocessed data (subfolder will be created)
  3. Run python extract_bin.py (it creates the output folder, saves the images in BGR format, creates image_path_list.txt and pair_list.txt)
  4. Run evaluation/getQualityScore.py to estimate the quality scores
    1. CR-FIQA(L)
      1. Download the pretrained model
      2. run: python3 evaluation/getQualityScorce.py --data_dir "./data/quality_data" --datasets "XQLFW" --model_path "path_to_pretrained_CF_FIQAL_model" --backbone "iresnet100" --model_id "181952" --score_file_name "CRFIQAL.txt"
    2. CR-FIQA(S)
      1. Download the pretrained model
      2. run: python3 evaluation/getQualityScorce.py --data_dir "./data/quality_data" --datasets "XQLFW" --model_path "path_to_pretrained_CF_FIQAL_model" --backbone "iresnet50" --model_id "32572" --score_file_name "CRFIQAS.txt"

Ploting ERC curves

  1. Download pretrained model e.g. ElasticFace-Arc, MagFac, CurricularFace or ArcFace
  2. Run CUDA_VISIBLE_DEVICES=0 python feature_extraction/extract_emb.py --model_path ./pretrained/ElasticFace --model_id 295672 --dataset_path "./data/quality_data/XQLFW" --modelname "ElasticFaceModel" 2.1 Note: change the path to pretrained model and other arguments according to the evaluated model
  3. Run python3 ERC/erc.py (details in ERC/README.md)

Citation

If you use any of the code provided in this repository or the models provided, please cite the following paper:

@misc{fboutros_CR_FIQA,
      title={CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability}, 
      author={Fadi Boutros, Meiling Fang, Marcel Klemt, Biying Fu, Naser Damer},
      year={2021},
      eprint={},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

This project is licensed under the terms of the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license. Copyright (c) 2021 Fraunhofer Institute for Computer Graphics Research IGD Darmstadt

Owner
Fadi Boutros
Fadi Boutros
Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet)

Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet) Our paper: https://arxiv.org/abs/2111.13324 We will release the complet

15 Oct 17, 2022
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)

Back to the Feature with PixLoc We introduce PixLoc, a neural network for end-to-end learning of camera localization from an image and a 3D model via

Computer Vision and Geometry Lab 610 Jan 05, 2023
📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

Rahul Vigneswaran 1 Jan 17, 2022
Portfolio analytics for quants, written in Python

QuantStats: Portfolio analytics for quants QuantStats Python library that performs portfolio profiling, allowing quants and portfolio managers to unde

Ran Aroussi 2.7k Jan 08, 2023
DABO: Data Augmentation with Bilevel Optimization

DABO: Data Augmentation with Bilevel Optimization [Paper] The goal is to automatically learn an efficient data augmentation regime for image classific

ElementAI 24 Aug 12, 2022
[CoRL 21'] TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo

TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo Lukas Koestler1*    Nan Yang1,2*,†    Niclas Zeller2,3    Daniel Cremers1

TUM Computer Vision Group 744 Jan 04, 2023
Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation Our paper is accepted by ICCV2021. Picture: Overview of the proposed Plug-an

Yunfei Liu 32 Dec 10, 2022
Code repository for "Reducing Underflow in Mixed Precision Training by Gradient Scaling" presented at IJCAI '20

Reducing Underflow in Mixed Precision Training by Gradient Scaling This project implements the gradient scaling method to improve the performance of m

Ruizhe Zhao 5 Apr 14, 2022
Unofficial Pytorch Implementation of WaveGrad2

WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati

MINDs Lab 104 Nov 29, 2022
Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval

BiDR Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval. Requirements torch==

Microsoft 11 Oct 20, 2022
Most popular metrics used to evaluate object detection algorithms.

Most popular metrics used to evaluate object detection algorithms.

Rafael Padilla 4.4k Dec 25, 2022
Type4Py: Deep Similarity Learning-Based Type Inference for Python

Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ

Software Analytics Lab 45 Dec 15, 2022
List of papers, code and experiments using deep learning for time series forecasting

Deep Learning Time Series Forecasting List of state of the art papers focus on deep learning and resources, code and experiments using deep learning f

Alexander Robles 2k Jan 06, 2023
ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022
[CVPR 2021] Scan2Cap: Context-aware Dense Captioning in RGB-D Scans

Scan2Cap: Context-aware Dense Captioning in RGB-D Scans Introduction We introduce the task of dense captioning in 3D scans from commodity RGB-D sensor

Dave Z. Chen 79 Nov 07, 2022
Wordle Env: A Daily Word Environment for Reinforcement Learning

Wordle Env: A Daily Word Environment for Reinforcement Learning Setup Steps: git pull [email&#

2 Mar 28, 2022
Zeyuan Chen, Yangchao Wang, Yang Yang and Dong Liu.

Principled S2R Dehazing This repository contains the official implementation for PSD Framework introduced in the following paper: PSD: Principled Synt

zychen 78 Dec 30, 2022
An Inverse Kinematics library aiming performance and modularity

IKPy Demo Live demos of what IKPy can do (click on the image below to see the video): Also, a presentation of IKPy: Presentation. Features With IKPy,

Pierre Manceron 481 Jan 02, 2023
GAN-generated image detection based on CNNs

GAN-image-detection This repository contains a GAN-generated image detector developed to distinguish real images from synthetic ones. The detector is

Image and Sound Processing Lab 17 Dec 15, 2022
(CVPR2021) DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation

DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation CVPR2021(oral) [arxiv] Requirements python3.7 pytorch==

W-zx-Y 85 Dec 07, 2022