MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

Related tags

Deep LearningOctConv
Overview

Octave Convolution

MXNet implementation for:

Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

ImageNet

Ablation

  • Loss: Softmax
  • Learning rate: Cosine (warm-up: 5 epochs, lr: 0.4)
  • MXNet API: Symbol API

example

Model baseline alpha = 0.125 alpha = 0.25 alpha = 0.5 alpha = 0.75
DenseNet-121 75.4 / 92.7 76.1 / 93.0 75.9 / 93.1 -- --
ResNet-26 73.2 / 91.3 75.8 / 92.6 76.1 / 92.6 75.5 / 92.5 74.6 / 92.1
ResNet-50 77.0 / 93.4 78.2 / 93.9 78.0 / 93.8 77.4 / 93.6 76.7 / 93.0
SE-ResNet-50 77.6 / 93.6 78.7 / 94.1 78.4 / 94.0 77.9 / 93.8 77.4 / 93.5
ResNeXt-50 78.4 / 94.0 -- 78.8 / 94.2 78.4 / 94.0 77.5 / 93.6
ResNet-101 78.5 / 94.1 79.2 / 94.4 79.2 / 94.4 78.7 / 94.1 --
ResNeXt-101 79.4 / 94.6 -- 79.6 / 94.5 78.9 / 94.4 --
ResNet-200 79.6 / 94.7 80.0 / 94.9 79.8 / 94.8 79.5 / 94.7 --

Note:

  • Top-1 / Top-5, single center crop accuracy is shown in the table. (testing script)
  • All residual networks in ablation study adopt pre-actice version[1] for convenience.

Others

  • Learning rate: Cosine (warm-up: 5 epochs, lr: 0.4)
  • MXNet API: Gluon API
Model alpha label smoothing[2] mixup[3] #Params #FLOPs Top1 / Top5
0.75 MobileNet (v1) .375 2.6 M 213 M 70.5 / 89.5
1.0 MobileNet (v1) .5 4.2 M 321 M 72.5 / 90.6
1.0 MobileNet (v2) .375 Yes 3.5 M 256 M 72.0 / 90.7
1.125 MobileNet (v2) .5 Yes 4.2 M 295 M 73.0 / 91.2
Oct-ResNet-152 .125 Yes Yes 60.2 M 10.9 G 81.4 / 95.4
Oct-ResNet-152 + SE .125 Yes Yes 66.8 M 10.9 G 81.6 / 95.7

Citation

@article{chen2019drop,
  title={Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution},
  author={Chen, Yunpeng and Fan, Haoqi and Xu, Bing and Yan, Zhicheng and Kalantidis, Yannis and Rohrbach, Marcus and Yan, Shuicheng and Feng, Jiashi},
  journal={Proceedings of the IEEE International Conference on Computer Vision},
  year={2019}
}

Third-party Implementations

Acknowledgement

  • Thanks MXNet, Gluon-CV and TVM!
  • Thanks @Ldpe2G for sharing the code for calculating the #FLOPs (link)
  • Thanks Min Lin (Mila), Xin Zhao (Qihoo Inc.), Tao Wang (NUS) for helpful discussions on the code development.

Reference

[1] He K, et al "Identity Mappings in Deep Residual Networks".

[2] Christian S, et al "Rethinking the Inception Architecture for Computer Vision"

[3] Zhang H, et al. "mixup: Beyond empirical risk minimization.".

License

The code and the models are MIT licensed, as found in the LICENSE file.

Owner
Meta Research
Meta Research
PyTorch implementation of the ideas presented in the paper Interaction Grounded Learning (IGL)

Interaction Grounded Learning This repository contains a simple PyTorch implementation of the ideas presented in the paper Interaction Grounded Learni

Arthur Juliani 4 Aug 31, 2022
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Cornelius Roemer 24 Oct 26, 2022
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
A new GCN model for Point Cloud Analyse

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for VA-GCN in pytorch. Classification (ModelNet10/40) Data Preparation D

12 Feb 02, 2022
Code for Multinomial Diffusion

Code for Multinomial Diffusion Abstract Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural ima

104 Jan 04, 2023
BLEURT is a metric for Natural Language Generation based on transfer learning.

BLEURT: a Transfer Learning-Based Metric for Natural Language Generation BLEURT is an evaluation metric for Natural Language Generation. It takes a pa

Google Research 492 Jan 05, 2023
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023
StyleTransfer - Open source style transfer project, based on VGG19

StyleTransfer - Open source style transfer project, based on VGG19

Patrick martins de lima 9 Dec 13, 2021
Instance-conditional Knowledge Distillation for Object Detection

Instance-conditional Knowledge Distillation for Object Detection This is a MegEngine implementation of the paper "Instance-conditional Knowledge Disti

MEGVII Research 47 Nov 17, 2022
MERLOT: Multimodal Neural Script Knowledge Models

merlot MERLOT: Multimodal Neural Script Knowledge Models MERLOT is a model for learning what we are calling "neural script knowledge" -- representatio

Rowan Zellers 190 Dec 22, 2022
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Jan 08, 2023
AirLoop: Lifelong Loop Closure Detection

AirLoop This repo contains the source code for paper: Dasong Gao, Chen Wang, Sebastian Scherer. "AirLoop: Lifelong Loop Closure Detection." arXiv prep

Chen Wang 53 Jan 03, 2023
PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

FIERY This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in: FIERY: Future In

Wayve 406 Dec 24, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
Python Implementation of Chess Playing AI with variable difficulty

Chess AI with variable difficulty level implemented using the MiniMax AB-Pruning Algorithm

Ali Imran 7 Feb 20, 2022
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.

Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat

Arnas Gečas 302 Dec 03, 2022
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features

Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features | paper | Official PyTorch implementation for Mul

48 Dec 28, 2022
Supporting code for "Autoregressive neural-network wavefunctions for ab initio quantum chemistry".

naqs-for-quantum-chemistry This repository contains the codebase developed for the paper Autoregressive neural-network wavefunctions for ab initio qua

Tom Barrett 24 Dec 23, 2022
Toward Spatially Unbiased Generative Models (ICCV 2021)

Toward Spatially Unbiased Generative Models Implementation of Toward Spatially Unbiased Generative Models (ICCV 2021) Overview Recent image generation

Jooyoung Choi 88 Dec 01, 2022