PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Related tags

Deep LearningDeFRCN
Overview

Introduction

This repo contains the official PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Updates!!

  • 【2021/10/10】 We release the official PyTorch implementation of DeFRCN.
  • 【2021/08/20】 We have uploaded our paper (long version with supplementary material) on arxiv, review it for more details.

Quick Start

1. Check Requirements

  • Linux with Python >= 3.6
  • PyTorch >= 1.6 & torchvision that matches the PyTorch version.
  • CUDA 10.1, 10.2
  • GCC >= 4.9

2. Build DeFRCN

  • Clone Code
    git clone https://github.com/er-muyue/DeFRCN.git
    cd DeFRCN
    
  • Create a virtual environment (optional)
    virtualenv defrcn
    cd /path/to/venv/defrcn
    source ./bin/activate
    
  • Install PyTorch 1.6.0 with CUDA 10.1
    pip3 install torch==1.6.0+cu101 torchvision==0.7.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html
  • Install Detectron2
    python3 -m pip install detectron2==0.3 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.6/index.html
    
    • If you use other version of PyTorch/CUDA, check the latest version of Detectron2 in this page: Detectron2.
    • Sorry for that I don’t have enough time to test on more versions, if you run into problems with other versions, please let me know.
  • Install other requirements.
    python3 -m pip install -r requirements.txt
    

3. Prepare Data and Weights

  • Data Preparation
    • We evaluate our models on two datasets for both FSOD and G-FSOD settings:

      Dataset Size GoogleDrive BaiduYun Note
      VOC2007 0.8G download download -
      VOC2012 3.5G download download -
      vocsplit <1M download download refer from TFA
      COCO ~19G - - download from offical
      cocosplit 174M download download refer from TFA
    • Unzip the downloaded data-source to datasets and put it into your project directory:

        ...
        datasets
          | -- coco (trainval2014/*.jpg, val2014/*.jpg, annotations/*.json)
          | -- cocosplit
          | -- VOC2007
          | -- VOC2012
          | -- vocsplit
        defrcn
        tools
        ...
      
  • Weights Preparation
    • We use the imagenet pretrain weights to initialize our model. Download the same models from here: GoogleDrive BaiduYun
    • The extract code for all BaiduYun link is 0000

4. Training and Evaluation

For ease of training and evaluation over multiple runs, we integrate the whole pipeline of few-shot object detection into one script run_*.sh, including base pre-training and novel-finetuning (both FSOD and G-FSOD).

  • To reproduce the results on VOC, EXP_NAME can be any string (e.g defrcn, or something) and SPLIT_ID must be 1 or 2 or 3 (we consider 3 random splits like other papers).
    bash run_voc.sh EXP_NAME SPLIT_ID (1, 2 or 3)
    
  • To reproduce the results on COCO, EXP_NAME can be any string (e.g defrcn, or something)
    bash run_coco.sh EXP_NAME
    
  • Please read the details of few-shot object detection pipeline in run_*.sh, you need change IMAGENET_PRETRAIN* to your path.

Results on COCO Benchmark

  • Few-shot Object Detection

    Method mAPnovel
    Shot 1 2 3 5 10 30
    FRCN-ft 1.0* 1.8* 2.8* 4.0* 6.5 11.1
    FSRW - - - - 5.6 9.1
    MetaDet - - - - 7.1 11.3
    MetaR-CNN - - - - 8.7 12.4
    TFA 4.4* 5.4* 6.0* 7.7* 10.0 13.7
    MPSR 5.1* 6.7* 7.4* 8.7* 9.8 14.1
    FSDetView 4.5 6.6 7.2 10.7 12.5 14.7
    DeFRCN (Our Paper) 9.3 12.9 14.8 16.1 18.5 22.6
    DeFRCN (This Repo) 9.7 13.1 14.5 15.6 18.4 22.6
  • Generalized Few-shot Object Detection

    Method mAPnovel
    Shot 1 2 3 5 10 30
    FRCN-ft 1.7 3.1 3.7 4.6 5.5 7.4
    TFA 1.9 3.9 5.1 7 9.1 12.1
    FSDetView 3.2 4.9 6.7 8.1 10.7 15.9
    DeFRCN (Our Paper) 4.8 8.5 10.7 13.6 16.8 21.2
    DeFRCN (This Repo) 4.8 8.5 10.7 13.5 16.7 21.0
  • * indicates that the results are reproduced by us with their source code.
  • It's normal to observe -0.3~+0.3AP noise between your results and this repo.
  • The results of mAPbase and mAPall for G-FSOD are list here GoogleDrive, BaiduYun.
  • If you have any problem of above results in this repo, you can download configs and train logs from GoogleDrive, BaiduYun.

Results on VOC Benchmark

  • Few-shot Object Detection

    Method Split-1 Split-2 Split-3
    Shot 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10
    YOLO-ft 6.6 10.7 12.5 24.8 38.6 12.5 4.2 11.6 16.1 33.9 13.0 15.9 15.0 32.2 38.4
    FRCN-ft 13.8 19.6 32.8 41.5 45.6 7.9 15.3 26.2 31.6 39.1 9.8 11.3 19.1 35.0 45.1
    FSRW 14.8 15.5 26.7 33.9 47.2 15.7 15.2 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9
    MetaDet 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1
    MetaR-CNN 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1
    TFA 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8
    MPSR 41.7 - 51.4 55.2 61.8 24.4 - 39.2 39.9 47.8 35.6 - 42.3 48.0 49.7
    DeFRCN (Our Paper) 53.6 57.5 61.5 64.1 60.8 30.1 38.1 47.0 53.3 47.9 48.4 50.9 52.3 54.9 57.4
    DeFRCN (This Repo) 55.1 57.4 61.1 64.6 61.5 32.1 40.5 47.9 52.9 47.5 48.9 51.9 52.3 55.7 59.0
  • Generalized Few-shot Object Detection

    Method Split-1 Split-2 Split-3
    Shot 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10
    FRCN-ft 9.9 15.6 21.6 28.0 52.0 9.4 13.8 17.4 21.9 39.7 8.1 13.9 19 23.9 44.6
    FSRW 14.2 23.6 29.8 36.5 35.6 12.3 19.6 25.1 31.4 29.8 12.5 21.3 26.8 33.8 31.0
    TFA 25.3 36.4 42.1 47.9 52.8 18.3 27.5 30.9 34.1 39.5 17.9 27.2 34.3 40.8 45.6
    FSDetView 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6
    DeFRCN (Our Paper) 40.2 53.6 58.2 63.6 66.5 29.5 39.7 43.4 48.1 52.8 35.0 38.3 52.9 57.7 60.8
    DeFRCN (This Repo) 43.8 57.5 61.4 65.3 67.0 31.5 40.9 45.6 50.1 52.9 38.2 50.9 54.1 59.2 61.9
  • Note that we change the λGDL-RCNN for VOC to 0.001 (0.01 in paper) and get better performance, check the configs for more details.

  • The results of mAPbase and mAPall for G-FSOD are list here GoogleDrive, BaiduYun.

  • If you have any problem of above results in this repo, you can download configs and logs from GoogleDrive, BaiduYun.

Acknowledgement

This repo is developed based on TFA and Detectron2. Please check them for more details and features.

Citing

If you use this work in your research or wish to refer to the baseline results published here, please use the following BibTeX entries:

@inproceedings{qiao2021defrcn,
  title={DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection},
  author={Qiao, Limeng and Zhao, Yuxuan and Li, Zhiyuan and Qiu, Xi and Wu, Jianan and Zhang, Chi},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={8681--8690},
  year={2021}
}
Official Repository of NeurIPS2021 paper: PTR

PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning Figure 1. Dataset Overview. Introduction A critical aspect of human vis

Yining Hong 32 Jun 02, 2022
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

kunal jagdish madavi 1 Jan 01, 2022
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Semi Hand-Object Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021).

96 Dec 27, 2022
1st Place Solution to ECCV-TAO-2020: Detect and Represent Any Object for Tracking

Instead, two models for appearance modeling are included, together with the open-source BAGS model and the full set of code for inference. With this code, you can achieve around 79 Oct 08, 2022

Learned Initializations for Optimizing Coordinate-Based Neural Representations

Learned Initializations for Optimizing Coordinate-Based Neural Representations Project Page | Paper Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1

Matthew Tancik 127 Jan 03, 2023
An open source Jetson Nano baseboard and tools to design your own.

My Jetson Nano Baseboard This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It

NVIDIA AI IOT 57 Dec 29, 2022
SNIPS: Solving Noisy Inverse Problems Stochastically

SNIPS: Solving Noisy Inverse Problems Stochastically This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problem

Bahjat Kawar 35 Nov 09, 2022
Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify th

NelakurthiSudheer 2 Jan 03, 2022
Transformer Tracking (CVPR2021)

TransT - Transformer Tracking [CVPR2021] Official implementation of the TransT (CVPR2021) , including training code and trained models. We are revisin

chenxin 465 Jan 06, 2023
An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results

EasyDatas An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results Installation pip install git+https

Ximing Yang 4 Dec 14, 2021
A project for developing transformer-based models for clinical relation extraction

Clinical Relation Extration with Transformers Aim This package is developed for researchers easily to use state-of-the-art transformers models for ext

uf-hobi-informatics-lab 101 Dec 19, 2022
Repo for parser tensorflow(.pb) and tflite(.tflite)

tfmodel_parser .pb file is the format of tensorflow model .tflite file is the format of tflite model, which usually used in mobile devices before star

1 Dec 23, 2021
A tensorflow implementation of an HMM layer

tensorflow_hmm Tensorflow and numpy implementations of the HMM viterbi and forward/backward algorithms. See Keras example for an example of how to use

Zach Dwiel 283 Oct 19, 2022
YuNetのPythonでのONNX、TensorFlow-Lite推論サンプル

YuNet-ONNX-TFLite-Sample YuNetのPythonでのONNX、TensorFlow-Lite推論サンプルです。 TensorFlow-LiteモデルはPINTO0309/PINTO_model_zoo/144_YuNetのものを使用しています。 Requirement Op

KazuhitoTakahashi 8 Nov 17, 2021
✨✨✨An awesome open source toolbox for stereo matching.

OpenStereo This is an awesome open source toolbox for stereo matching. Supported Methods: BM SGM(T-PAMI'07) GCNet(ICCV'17) PSMNet(CVPR'18) StereoNet(E

Wang Qingyu 6 Nov 04, 2022
Artstation-Artistic-face-HQ Dataset (AAHQ)

Artstation-Artistic-face-HQ Dataset (AAHQ) Artstation-Artistic-face-HQ (AAHQ) is a high-quality image dataset of artistic-face images. It is proposed

onion 105 Dec 16, 2022
The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.

Temporal Query Networks for Fine-grained Video Understanding 📋 This repository contains the implementation of CVPR2021 paper Temporal_Query_Networks

55 Dec 21, 2022
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.

The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w

Louis-François Bouchard 118 Dec 21, 2022
Get 2D point positions (e.g., facial landmarks) projected on 3D mesh

points2d_projection_mesh Input 2D points (e.g. facial landmarks) on an image Camera parameters (extrinsic and intrinsic) of the image Aligned 3D mesh

5 Dec 08, 2022