Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"

Overview

Storium GPT-2 Models

This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platform for Machine-in-the-Loop Story Generation]. It has all the code necessary to reproduce the models and analysis from the paper.

Overview

A high-level outline of our dataset and platform. In this example from a real STORIUM game, the character ADIRA MAKAROVA uses the strength card DEADLY AIM to DISRUPT THE GERMANS, a challenge card. Our model conditions on the natural language annotations in the scene intro, challenge card, strength card, and character, along with the text of the previous scene entry (not shown) to generate a suggested story continuation. Players may then edit the model output, by adding or deleting text, before publishing the entry. We collect these edits, using the matched text as the basis of our USER metric. New models can be added to the platform by simply implementing four methods: startup, shutdown, preprocess, and generate.

Deployment

This repository contains the code that makes our GPT-2 story generation models deployable on our evaluation platform, so it serves as a great template for how to structure your code. Please see the file figmentate.py for the simple API required for making your model deployable on our platform. You will also need to provide a json file with any properties needed to pass to your startup method. See for example the properties below:

{
  "scene_entry":
  {
    "properties": {
      "checkpoint_path": "/var/lib/figmentator/checkpoint",
      "sample": {
	"top_p": 0.9,
	"temperature": 0.9,
	"repetition_penalty": 1.2
      }
    },
    "requires": ["torch==1.3.0", "transformers==2.2.0", "kiwisolver==1.1.0"],
    "cls": "model=figmentate:GPT2Figmentator"
  }
}

The key scene_entry defines the type of model being created. Currently, we only support models that generate the text of a scene entry, though we might support other types of prediction models in the future, like suggesting cards or narrator actions.

The properties object will be passed to your startup method. It allows for defining any parameters needed for sampling from your model.

The requires list, is simply a list of python packages that need to be installed for your model to run. These will be automatically installed when your model is deployed. If you notice, we specify the deep learning package torch as a requirement. That's because our code is agnostic to the underlying deep learning framework being used by your model. That means it should support models using other frameworks like tensorflow or jax.

Finally, the cls string is the class that wraps your model. It is specified using Python's entry points syntax.

Cite

@inproceedings{akoury2020storium,
  Author = {Nader Akoury, Shufan Wang, Josh Whiting, Stephen Hood, Nanyun Peng and Mohit Iyyer},
  Booktitle = {Empirical Methods for Natural Language Processing},
  Year = "2020",
  Title = {{STORIUM}: {A} {D}ataset and {E}valuation {P}latform for {S}tory {G}eneration}
}
Owner
Nader Akoury
CS PhD Student
Nader Akoury
Exploration of some patients clinical variables.

Answer_ALS_clinical_data Exploration of some patients clinical variables. All the clinical / metadata data is available here: https://data.answerals.o

1 Jan 20, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Daft-Exprt - PyTorch Implementation PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis The

Keon Lee 47 Dec 18, 2022
Empowering journalists and whistleblowers

Onymochat Empowering journalists and whistleblowers Onymochat is an end-to-end encrypted, decentralized, anonymous chat application. You can also host

Samrat Dutta 19 Sep 02, 2022
Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification

Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification (ACDNE) This is a pytorch implementation of the Adv

陈志豪 8 Oct 13, 2022
A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21

ANEMONE A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21 Dependencies python==3.6.1 dgl==

Graph Analysis & Deep Learning Laboratory, GRAND 30 Dec 14, 2022
Replication of Pix2Seq with Pretrained Model

Pretrained-Pix2Seq We provide the pre-trained model of Pix2Seq. This version contains new data augmentation. The model is trained for 300 epochs and c

peng gao 51 Nov 22, 2022
本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

说明 本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。 python依赖 tf2.3 、cv2、numpy、pyqt5 pyqt5安装 pip install PyQt5 pip install PyQt5-tools 使用 程

4 May 04, 2022
Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

ArtFlow Official PyTorch implementation of the paper: ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows Jie An*, Siyu Huang*, Yibing

123 Dec 27, 2022
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

61 Dec 21, 2022
Binary Stochastic Neurons in PyTorch

Binary Stochastic Neurons in PyTorch http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html https://github.com/pytorch/examples/tree/master/mnis

Onur Kaplan 54 Nov 21, 2022
FCOS: Fully Convolutional One-Stage Object Detection (ICCV'19)

FCOS: Fully Convolutional One-Stage Object Detection This project hosts the code for implementing the FCOS algorithm for object detection, as presente

Tian Zhi 3.1k Jan 05, 2023
A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021

EMNLP 2021 - A Partition Filter Network for Joint Entity and Relation Extraction

zhy 127 Jan 04, 2023
Extreme Rotation Estimation using Dense Correlation Volumes

Extreme Rotation Estimation using Dense Correlation Volumes This repository contains a PyTorch implementation of the paper: Extreme Rotation Estimatio

Ruojin Cai 29 Nov 18, 2022
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

Aiyu Cui 277 Dec 28, 2022
Open CV - Convert a picture to look like a cartoon sketch in python

Use the video https://www.youtube.com/watch?v=k7cVPGpnels for initial learning.

Sammith S Bharadwaj 3 Jan 29, 2022
Codebase for ECCV18 "The Sound of Pixels"

Sound-of-Pixels Codebase for ECCV18 "The Sound of Pixels". *This repository is under construction, but the core parts are already there. Environment T

Hang Zhao 318 Dec 20, 2022
SMPL-X: A new joint 3D model of the human body, face and hands together

SMPL-X: A new joint 3D model of the human body, face and hands together [Paper Page] [Paper] [Supp. Mat.] Table of Contents License Description News I

Vassilis Choutas 1k Jan 09, 2023
Off-policy continuous control in PyTorch, with RDPG, RTD3 & RSAC

arXiv technical report soon available. we are updating the readme to be as comprehensive as possible Please ask any questions in Issues, thanks. Intro

Zhihan 31 Dec 30, 2022
Streamlit component for TensorBoard, TensorFlow's visualization toolkit

streamlit-tensorboard This is a work-in-progress, providing a function to embed TensorBoard, TensorFlow's visualization toolkit, in Streamlit apps. In

Snehan Kekre 27 Nov 13, 2022