EMNLP'2021: Can Language Models be Biomedical Knowledge Bases?

Overview

BioLAMA

BioLAMA

BioLAMA is biomedical factual knowledge triples for probing biomedical LMs. The triples are collected and pre-processed from three sources: CTD, UMLS, and Wikidata. Please see our paper Can Language Models be Biomedical Knowledge Bases? (Sung et al., 2021) for more details.

* The dataset for the BioLAMA probe is available at data.tar.gz

Getting Started

After the installation, you can easily try BioLAMA with manual prompts. When a subject is "flu" and you want to probe its symptoms from an LM, the input should be like "Flu has symptom such as [Y]."

# Set MODEL to bert-base-cased for BERT or dmis-lab/biobert-base-cased-v1.2 for BioBERT
MODEL=./RoBERTa-base-PM-Voc/RoBERTa-base-PM-Voc-hf
python ./BioLAMA/cli_demo.py \
    --model_name_or_path ${MODEL}

Result:

Please enter input (e.g., Flu has symptoms such as [Y].):
hepatocellular carcinoma has symptoms such as [Y].
-------------------------
Rank    Prob    Pred
-------------------------
1       0.648   jaundice
2       0.223   abdominal pain
3       0.127   jaundice and ascites
4       0.11    ascites
5       0.086   hepatomegaly
6       0.074   obstructive jaundice
7       0.06    abdominal pain and jaundice
8       0.059   ascites and jaundice
9       0.043   anorexia and jaundice
10      0.042   fever and jaundice
-------------------------
Top1 prediction sentence:
"hepatocellular carcinoma has symptoms such as jaundice."

Quick Link

Installation

# Install torch with conda (please check your CUDA version)
conda create -n BioLAMA python=3.7
conda activate BioLAMA
conda install pytorch=1.8.0 cudatoolkit=10.2 -c pytorch

# Install BioLAMA
git clone https://github.com/dmis-lab/BioLAMA.git
cd BioLAMA
pip install -r requirements.txt

Resources

Models

For BERT and BioBERT, we use checkpoints provided in the Huggingface Hub:

Bio-LM is not provided in the Huggingface Hub. Therefore, we use the Bio-LM checkpoint released in link. Among the various versions of Bio-LMs, we use `RoBERTa-base-PM-Voc-hf'.

wget https://dl.fbaipublicfiles.com/biolm/RoBERTa-base-PM-Voc-hf.tar.gz
tar -xzvf RoBERTa-base-PM-Voc-hf.tar.gz 
rm -rf RoBERTa-base-PM-Voc-hf.tar.gz

Datasets

The dataset will take about 78 MB of space. Download data.tar.gz and uncompress it.

tar -xzvf data.tar.gz
rm -rf data.tar.gz

The directory tree of the data is like:

data
├── ctd
│   ├── entities
│   ├── meta
│   ├── prompts
│   └── triples_processed
│       └── CD1
│           ├── dev.jsonl
│           ├── test.jsonl
│           └── train.jsonl
├── wikidata
│   ├── entities
│   ├── meta
│   ├── prompts
│   └── triples_processed
│       └── P2175
│           ├── dev.jsonl
│           ├── test.jsonl
│           └── train.jsonl
└── umls
    ├── meta
    └── prompts

Important: Triples of UMLS is not provided due to the license. For those who want to probe LMs using triples of UMLS, we provide the pre-processing scripts for UMLS. Please follow this instruction.

Experiments

We provide two ways of probing PLMs with BioLAMA:

Manual Prompt

Manual Prompt probes PLMs using pre-defined manual prompts. The predictions and scores will be logged in '/output'.

# Set TASK to 'ctd' for CTD or 'umls' for UMLS
# Set MODEL to 'bert-base-cased' for BERT or 'dmis-lab/biobert-base-cased-v1.2' for BioBERT
TASK=wikidata
MODEL=./RoBERTa-base-PM-Voc/RoBERTa-base-PM-Voc-hf
PROMPT_PATH=./data/${TASK}/prompts/manual.jsonl
TEST_PATH=./data/${TASK}/triples_processed/*/test.jsonl

python ./BioLAMA/run_manual.py \
    --model_name_or_path ${MODEL} \
    --prompt_path ${PROMPT_PATH} \
    --test_path "${TEST_PATH}" \
    --init_method confidence \
    --iter_method none \
    --num_mask 10 \
    --max_iter 10 \
    --beam_size 5 \
    --batch_size 16 \
    --output_dir ./output/${TASK}_manual

Result:

PID     [email protected]   [email protected]
-------------------------
P2175   9.40    21.11
P2176   22.46   39.75
P2293   2.24    11.43
P4044   9.47    19.47
P780    16.30   37.85
-------------------------
MACRO   11.97   25.92

OptiPrompt

OptiPrompt probes PLMs using embedding-based prompts starting from embeddings of manual prompts. The predictions and scores will be logged in '/output'.

# Set TASK to 'ctd' for CTD or 'umls' for UMLS
# Set MODEL to 'bert-base-cased' for BERT or 'dmis-lab/biobert-base-cased-v1.2' for BioBERT
TASK=wikidata
MODEL=./RoBERTa-base-PM-Voc/RoBERTa-base-PM-Voc-hf
PROMPT_PATH=./data/${TASK}/prompts/manual.jsonl
TRAIN_PATH=./data/${TASK}/triples_processed/*/train.jsonl
DEV_PATH=./data/${TASK}/triples_processed/*/dev.jsonl
TEST_PATH=./data/${TASK}/triples_processed/*/test.jsonl
PROMPT_PATH=./data/${TASK}/prompts/manual.jsonl

python ./BioLAMA/run_optiprompt.py \
    --model_name_or_path ${MODEL} \
    --train_path "${TRAIN_PATH}" \
    --dev_path "${DEV_PATH}" \
    --test_path "${TEST_PATH}" \
    --prompt_path ${PROMPT_PATH} \
    --num_mask 10 \
    --init_method confidence \
    --iter_method none \
    --max_iter 10 \
    --beam_size 5 \
    --batch_size 16 \
    --lr 3e-3 \
    --epochs 10 \
    --seed 0 \
    --prompt_token_len 5 \
    --init_manual_template \
    --output_dir ./output/${TASK}_optiprompt

Result:

PID     [email protected]   [email protected]
-------------------------
P2175   9.47    24.94
P2176   20.14   39.57
P2293   2.90    9.21
P4044   7.53    18.58
P780    12.98   33.43
-------------------------
MACRO   7.28    18.51

Acknowledgement

Parts of the code are modified from genewikiworld, X-FACTR, and OptiPrompt. We appreciate the authors for making their projects open-sourced.

Citations

@inproceedings{sung2021can,
    title={Can Language Models be Biomedical Knowledge Bases},
    author={Sung, Mujeen and Lee, Jinhyuk and Yi, Sean and Jeon, Minji and Kim, Sungdong and Kang, Jaewoo},
    booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
    year={2021},
}
Owner
DMIS Laboratory - Korea University
Data Mining & Information Systems Laboratory @ Korea University
DMIS Laboratory - Korea University
Persian Bert For Long-Range Sequences

ParsBigBird: Persian Bert For Long-Range Sequences The Bert and ParsBert algorithms can handle texts with token lengths of up to 512, however, many ta

Sajjad Ayoubi 63 Dec 14, 2022
Collection of scripts to pinpoint obfuscated code

Obfuscation Detection (v1.0) Author: Tim Blazytko Automatically detect control-flow flattening and other state machines Description: Scripts and binar

Tim Blazytko 230 Nov 26, 2022
Bot to connect a real Telegram user, simulating responses with OpenAI's davinci GPT-3 model.

AI-BOT Bot to connect a real Telegram user, simulating responses with OpenAI's davinci GPT-3 model.

Thempra 2 Dec 21, 2022
Must-read papers on improving efficiency for pre-trained language models.

Must-read papers on improving efficiency for pre-trained language models.

Tobias Lee 89 Jan 03, 2023
Python package for Turkish Language.

PyTurkce Python package for Turkish Language. Documentation: https://pyturkce.readthedocs.io. Installation pip install pyturkce Usage from pyturkce im

Mert Cobanov 14 Oct 09, 2022
Analyse japanese ebooks using MeCab to determine the difficulty level for japanese learners

japanese-ebook-analysis This aim of this project is to make analysing the contents of a japanese ebook easy and streamline the process for non-technic

Christoffer Aakre 14 Jul 23, 2022
My implementation of Safaricom Machine Learning Codility test. The code has bugs, logical I guess I made errors and any correction will be appreciated.

Safaricom_Codility Machine Learning 2022 The test entails two questions. Question 1 was on Machine Learning. Question 2 was on SQL I ran out of time.

Lawrence M. 1 Mar 03, 2022
Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech

epub2audiobook Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech Input examples qual a pasta do seu

7 Aug 25, 2022
Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written form.

Neural G2P to portuguese language Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written for

fluz 11 Nov 16, 2022
Pipeline for training LSA models using Scikit-Learn.

Latent Semantic Analysis Pipeline for training LSA models using Scikit-Learn. Usage Instead of writing custom code for latent semantic analysis, you j

Dani El-Ayyass 23 Sep 05, 2022
Tokenizer - Module python d'analyse syntaxique et de grammaire, tokenization

Tokenizer Le Tokenizer est un analyseur lexicale, il permet, comme Flex and Yacc par exemple, de tokenizer du code, c'est à dire transformer du code e

Manolo 1 Aug 15, 2022
Yes it's true :broken_heart:

Information WARNING: No longer hosted If you would like to be on this repo's readme simply fork or star it! Forks 1 - Flowzii 2 - Errorcrafter 3 - vk-

Dropout 66 Dec 31, 2022
A collection of Korean Text Datasets ready to use using Tensorflow-Datasets.

tfds-korean A collection of Korean Text Datasets ready to use using Tensorflow-Datasets. TensorFlow-Datasets를 이용한 한국어/한글 데이터셋 모음입니다. Dataset Catalog |

Jeong Ukjae 20 Jul 11, 2022
An open-source NLP research library, built on PyTorch.

An Apache 2.0 NLP research library, built on PyTorch, for developing state-of-the-art deep learning models on a wide variety of linguistic tasks. Quic

AI2 11.4k Jan 01, 2023
Trained T5 and T5-large model for creating keywords from text

text to keywords Trained T5-base and T5-large model for creating keywords from text. Supported languages: ru Pretraining Large version | Pretraining B

Danil 61 Nov 24, 2022
A paper list of pre-trained language models (PLMs).

Large-scale pre-trained language models (PLMs) such as BERT and GPT have achieved great success and become a milestone in NLP.

RUCAIBox 124 Jan 02, 2023
Open solution to the Toxic Comment Classification Challenge

Starter code: Kaggle Toxic Comment Classification Challenge More competitions 🎇 Check collection of public projects 🎁 , where you can find multiple

minerva.ml 153 Jun 22, 2022
Chinese version of GPT2 training code, using BERT tokenizer.

GPT2-Chinese Description Chinese version of GPT2 training code, using BERT tokenizer or BPE tokenizer. It is based on the extremely awesome repository

Zeyao Du 5.6k Jan 04, 2023
NeuralQA: A Usable Library for Question Answering on Large Datasets with BERT

NeuralQA: A Usable Library for (Extractive) Question Answering on Large Datasets with BERT Still in alpha, lots of changes anticipated. View demo on n

Victor Dibia 220 Dec 11, 2022
A fast hierarchical dimensionality reduction algorithm.

h-NNE: Hierarchical Nearest Neighbor Embedding A fast hierarchical dimensionality reduction algorithm. h-NNE is a general purpose dimensionality reduc

Marios Koulakis 35 Dec 12, 2022