VOS: Learning What You Don’t Know by Virtual Outlier Synthesis

Related tags

Deep Learningvos
Overview

VOS

This is the source code accompanying the paper VOS: Learning What You Don’t Know by Virtual Outlier Synthesis by Xuefeng Du, Zhaoning Wang, Mu Cai, and Yixuan Li

The codebase is heavily based on ProbDet and Detectron2.

Dataset Preparation

PASCAL VOC

Download the processed VOC 2007 and 2012 dataset from here.

The VOC dataset folder should have the following structure:

 └── VOC_DATASET_ROOT
     |
     ├── JPEGImages
     ├── voc0712_train_all.json
     └── val_coco_format.json

COCO

Download COCO2017 dataset from the official website.

Download the OOD dataset (json file) when the in-distribution dataset is Pascal VOC from here.

Download the OOD dataset (json file) when the in-distribution dataset is BDD-100k from here.

Put the two processed OOD json files to ./anntoations

The COCO dataset folder should have the following structure:

 └── COCO_DATASET_ROOT
     |
     ├── annotations
        ├── xxx (the original json files)
        ├── instances_val2017_ood_wrt_bdd_rm_overlap.json
        └── instances_val2017_ood_rm_overlap.json
     ├── train2017
     └── val2017

BDD-100k

Donwload the BDD-100k images from the official website.

Download the processed BDD-100k json files from here and here.

The BDD dataset folder should have the following structure:

 └── BDD_DATASET_ROOT
     |
     ├── images
     ├── val_bdd_converted.json
     └── train_bdd_converted.json

OpenImages

Download our OpenImages validation splits here. We created a tarball that contains the out-of-distribution data splits used in our paper for hyperparameter tuning. Do not modify or rename the internal folders as those paths are hard coded in the dataset reader. The OpenImages dataset is created in a similar way following this paper.

The OpenImages dataset folder should have the following structure:

 └── OEPNIMAGES_DATASET_ROOT
     |
     ├── coco_classes
     └── ood_classes_rm_overlap

Before training, modify the dataset address in the ./detection/core/datasets/setup_datasets.py according to your local dataset address.

Visualization of the OOD datasets

The OOD images with respect to different in-distribution datasets can be downloaded from ID-VOC-OOD-COCO, ID-VOC-OOD-openimages, ID-BDD-OOD-COCO, ID-BDD-OOD-openimages.

Training

Firstly, enter the detection folder by running

cd detection

Vanilla Faster-RCNN with VOC as the in-distribution dataset


python train_net.py
--num-gpus 8
--config-file VOC-Detection/faster-rcnn/vanilla.yaml 
--random-seed 0 
--resume

Vanilla Faster-RCNN with BDD as the in-distribution dataset

python train_net.py 
--num-gpus 8 
--config-file BDD-Detection/faster-rcnn/vanilla.yaml 
--random-seed 0 
--resume

VOS on ResNet

python train_net_gmm.py 
--num-gpus 8 
--config-file VOC-Detection/faster-rcnn/vos.yaml 
--random-seed 0 
--resume

VOS on RegNet

Before training using the RegNet as the backbone, download the pretrained RegNet backbone from here.

python train_net_gmm.py 
--num-gpus 8 
--config-file VOC-Detection/faster-rcnn/regnetx.yaml 
--random-seed 0 
--resume

Before training on VOS, change "VOS.STARTING_ITER" and "VOS.SAMPLE_NUMBER" in the config file to the desired numbers in paper.

Evaluation

Evaluation with the in-distribution dataset to be VOC

Firstly run on the in-distribution dataset:

python apply_net.py 
--test-dataset voc_custom_val 
--config-file VOC-Detection/faster-rcnn/vos.yaml 
--inference-config Inference/standard_nms.yaml 
--random-seed 0 
--image-corruption-level 0 
--visualize 0

Then run on the OOD dataset:

python apply_net.py
--test-dataset coco_ood_val 
--config-file VOC-Detection/faster-rcnn/vos.yaml 
--inference-config Inference/standard_nms.yaml 
--random-seed 0 
--image-corruption-level 0 
--visualize 0

Obtain the metrics using:

python voc_coco_plot.py 
--name vos 
--thres xxx 
--energy 1 
--seed 0

Here the threshold is determined according to ProbDet. It will be displayed in the screen as you finish evaluating on the in-distribution dataset.

Evaluation with the in-distribution dataset to be BDD

Firstly run on the in-distribution dataset:

python apply_net.py 
--test-dataset bdd_custom_val 
--config-file VOC-Detection/faster-rcnn/vos.yaml 
--inference-config Inference/standard_nms.yaml 
--random-seed 0 
--image-corruption-level 0 
--visualize 0

Then run on the OOD dataset:

python apply_net.py 
--test-dataset coco_ood_val_bdd 
--config-file VOC-Detection/faster-rcnn/vos.yaml 
--inference-config Inference/standard_nms.yaml 
--random-seed 0 
--image-corruption-level 0 
--visualize 0

Obtain the metrics using:

python bdd_coco_plot.py
--name vos 
--thres xxx 
--energy 1 
--seed 0

Pretrained models

The pretrained models for Pascal-VOC can be downloaded from vanilla and VOS-ResNet and VOS-RegNet.

The pretrained models for BDD-100k can be downloaded from vanilla and VOS-ResNet and VOS-RegNet.

VOS on Classification models

Train on WideResNet

cd classification/CIFAR/ & 
python train_virtual.py 
--start_epoch 40 
--sample_number 1000 
--sample_from 10000 
--select 1 
--loss_weight 0.1 

where "start_epoch" denotes the starting epoch of the uncertainty regularization branch.

"sample_number" denotes the size of the in-distribution queue.

"sample_from" and "select" are used to approximate the likelihood threshold during virtual outlier synthesis.

"loss_weight" denotes the weight of the regularization loss.

Please see Section 3 and Section 4.1 in the paper for details.

Train on DenseNet

cd classification/CIFAR/ &
python train_virtual_dense.py 
--start_epoch 40 
--sample_number 1000 
--sample_from 10000 
--select 1 
--loss_weight 0.1 

Evaluation on different classifiers

cd classification/CIFAR/ & 
python test.py 
--model_name xx 
--method_name xx 
--score energy 
--num_to_avg 10

where "model_name" denotes the model architectures. ("res" denotes the WideResNet and "dense" denotes the DenseNet.)

"method_name" denotes the checkpoint name you are loading.

Pretrained models

We provide the pretrained models using WideResNet and DenseNet with the in-distribution dataset to be CIFAR-10.

Citation

If you found any part of this code is useful in your research, please consider citing our paper:

 @article{du2022vos,
      title={VOS: Learning What You Don’t Know by Virtual Outlier Synthesis}, 
      author={Du, Xuefeng and Wang, Zhaoning and Cai, Mu and Li, Yixuan},
      journal={Proceedings of the International Conference on Learning Representations},
      year={2022}
}
Owner
CS Research Group led by Prof. Sharon Li
Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)

SMPLicit: Topology-aware Generative Model for Clothed People [Project] [arXiv] License Software Copyright License for non-commercial scientific resear

Enric Corona 225 Dec 13, 2022
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis (CVPR2022)

Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis Multi-View Consistent Generative Adversarial Networks for 3D-aware

Xuanmeng Zhang 78 Dec 10, 2022
A certifiable defense against adversarial examples by training neural networks to be provably robust

DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the

SRI Lab, ETH Zurich 202 Dec 13, 2022
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
내가 보려고 정리한 <프로그래밍 기초 Ⅰ> / organized for me

Programming-Basics 프로그래밍 기초 Ⅰ 아카이브 Do it! 점프 투 파이썬 주차 강의주제 비고 1주차 Syllabus 2주차 자료형 - 숫자형 3주차 자료형 - 문자열형 4주차 입력과 출력 5주차 제어문 - 조건문 if 6주차 제어문 - 반복문 whil

KIMMINSEO 1 Mar 07, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Unofficial Implementation of MLP-Mixer, Image Classification Model

MLP-Mixer Unoffical Implementation of MLP-Mixer, easy to use with terminal. Train and test easly. https://arxiv.org/abs/2105.01601 MLP-Mixer is an arc

Oğuzhan Ercan 6 Dec 05, 2022
Yolo ros - YOLO-ROS for HUAWEI ATLAS200

YOLO-ROS YOLO-ROS for NVIDIA YOLO-ROS for HUAWEI ATLAS200, please checkout for b

ChrisLiu 5 Oct 18, 2022
🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗 This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
OverFeat is a Convolutional Network-based image classifier and feature extractor.

OverFeat OverFeat is a Convolutional Network-based image classifier and feature extractor. OverFeat was trained on the ImageNet dataset and participat

593 Dec 08, 2022
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022
An LSTM based GAN for Human motion synthesis

GAN-motion-Prediction An LSTM based GAN for motion synthesis has a few issues reading H3.6M data from A.Jain et al , will fix soon. Prediction of the

Amogh Adishesha 9 Jun 17, 2022
[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Ok Mugle! 🎵 장르부터 멜로디까지, Content-based Music Recommendation 'Ok Mugle!'은 제13회 투빅스 컨퍼런스(2022.01.15)에서 진행한 음악 추천 프로젝트입니다. Description 📖 본 프로젝트에서는 Kakao

SeongBeomLEE 5 Oct 09, 2022
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022
CondNet: Conditional Classifier for Scene Segmentation

CondNet: Conditional Classifier for Scene Segmentation Introduction The fully convolutional network (FCN) has achieved tremendous success in dense vis

ycszen 31 Jul 22, 2022
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation This is the PyTorch implemention of ICCV'21 paper SGPA: Structure

Chen Kai 24 Dec 05, 2022
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on

Salesforce 805 Jan 09, 2023