Pipeline for fast building text classification TF-IDF + LogReg baselines.

Overview

tests linter codecov

python 3.6 release (latest by date) license

pre-commit code style: black

pypi version pypi downloads

Text Classification Baseline

Pipeline for fast building text classification TF-IDF + LogReg baselines.

Usage

Instead of writing custom code for specific text classification task, you just need:

  1. install pipeline:
pip install text-classification-baseline
  1. run pipeline:
  • either in terminal:
text-clf-train
  • or in python:
import text_clf

text_clf.train()

No data preparation is needed, only a csv file with two raw columns (with arbitrary names):

  • text
  • target

NOTE: the target can be presented in any format, including text - not necessarily integers from 0 to n_classes-1.

Config

The user interface consists of only one file config.yaml.

Change config.yaml to create the desired configuration and train text classification model with the following command:

  • terminal:
text-clf-train --path_to_config config.yaml
  • python:
import text_clf

text_clf.train(path_to_config="config.yaml")

Default config.yaml:

seed: 42
verbose: true
path_to_save_folder: models

# data
data:
  train_data_path: data/train.csv
  valid_data_path: data/valid.csv
  sep: ','
  text_column: text
  target_column: target_name_short

# tf-idf
tf-idf:
  lowercase: true
  ngram_range: (1, 1)
  max_df: 1.0
  min_df: 0.0

# logreg
logreg:
  penalty: l2
  C: 1.0
  class_weight: balanced
  solver: saga
  multi_class: auto
  n_jobs: -1

NOTE: tf-idf and logreg are sklearn TfidfVectorizer and LogisticRegression parameters correspondingly, so you can parameterize instances of these classes however you want.

Output

After training the model, the pipeline will return the following files:

  • model.joblib - sklearn pipeline with TF-IDF and LogReg steps
  • target_names.json - mapping from encoded target labels from 0 to n_classes-1 to it names
  • config.yaml - config that was used to train the model
  • logging.txt - logging file

Requirements

Python >= 3.6

Citation

If you use text-classification-baseline in a scientific publication, we would appreciate references to the following BibTex entry:

@misc{dayyass2021textclf,
    author       = {El-Ayyass, Dani},
    title        = {Pipeline for training text classification baselines},
    howpublished = {\url{https://github.com/dayyass/text-classification-baseline}},
    year         = {2021}
}
You might also like...
Code for EMNLP 2021 main conference paper
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

This repository contains data used in the NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deployment in Text to Speech Systems

Proteno This is the data release associated with the corresponding NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deploymen

PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.
PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.

An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

glow-speak is a fast, local, neural text to speech system that uses eSpeak-ng as a text/phoneme front-end.

Glow-Speak glow-speak is a fast, local, neural text to speech system that uses eSpeak-ng as a text/phoneme front-end. Installation git clone https://g

Pipeline for chemical image-to-text competition
Pipeline for chemical image-to-text competition

BMS-Molecular-Translation Introduction This is a pipeline for Bristol-Myers Squibb – Molecular Translation by Vadim Timakin and Maksim Zhdanov. We got

Text-Summarization-using-NLP - Text Summarization using NLP  to fetch BBC News Article and summarize its text and also it includes custom article Summarization A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:
A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:

A Python package implementing a new model for text classification with visualization tools for Explainable AI 🍣 Online live demos: http://tworld.io/s

Text vectorization tool to outperform TFIDF for classification tasks
Text vectorization tool to outperform TFIDF for classification tasks

WHAT: Supervised text vectorization tool Textvec is a text vectorization tool, with the aim to implement all the "classic" text vectorization NLP meth

Text vectorization tool to outperform TFIDF for classification tasks
Text vectorization tool to outperform TFIDF for classification tasks

WHAT: Supervised text vectorization tool Textvec is a text vectorization tool, with the aim to implement all the "classic" text vectorization NLP meth

Comments
  • release v0.1.4

    release v0.1.4

    • fixed load_20newsgroups.py (#65 #71)
    • added Makefile (#71)
    • added logging confusion matrix (#72)
    • replaced all "valid" occurrences with "test" (#74)
    • updated docstrings (#77)
    • changed python interface - train function returns model and target_names_mapping (#78)
    enhancement 
    opened by dayyass 1
  • release v0.1.6

    release v0.1.6

    fixed token frequency support (add token frequency support #85) fixed threshold selection for binary classification (add threshold selection for binary classification #86)

    bug enhancement 
    opened by dayyass 0
  • release v0.1.5

    release v0.1.5

    • added lemmatization (#66)
    • added token frequency support (#84)
    • added threshold selection for binary classification (#79)
    • added arbitrary save folder name (#80)
    enhancement 
    opened by dayyass 0
  • release v0.1.5

    release v0.1.5

    • added lemmatization (#81)
    • added token frequency support (#85)
    • added threshold selection for binary classification (#86)
    • added arbitrary save folder name (#83)
    enhancement 
    opened by dayyass 0
Releases(v0.1.6)
  • v0.1.6(Nov 6, 2021)

    Release v0.1.6

    • fixed token frequency support (add token frequency support #85)
    • fixed threshold selection for binary classification (add threshold selection for binary classification #86)
    Source code(tar.gz)
    Source code(zip)
  • v0.1.5(Oct 21, 2021)

    Release v0.1.5 🥳🎉🍾

    • added pymorphy2 lemmatization (#81)
    • added token frequency support (#85)
    • added threshold selection for binary classification (#86)
    • added arbitrary save folder name (#83)

    pymorphy2 lemmatization (config.yaml)

    # preprocessing
    # (included in resulting model pipeline, so preserved for inference)
    preprocessing:
      lemmatization: pymorphy2
    

    token frequency support

    • text_clf.token_frequency.get_token_frequency(path_to_config) -
      get token frequency of train dataset according to the config file parameters

    threshold selection for binary classification

    • text_clf.pr_roc_curve.get_precision_recall_curve(path_to_model_folder) -
      get precision and recall metrics for precision-recall curve
    • text_clf.pr_roc_curve.get_roc_curve(path_to_model_folder) -
      get false positive rate (fpr) and true positive rate (tpr) metrics for roc curve
    • text_clf.pr_roc_curve.plot_precision_recall_curve(precision, recall) -
      plot precision-recall curve
    • text_clf.pr_roc_curve.plot_roc_curve(fpr, tpr) -
      plot roc curve
    • text_clf.pr_roc_curve.plot_precision_recall_f1_curves_for_thresholds(precision, recall, thresholds) -
      plot precision, recall, f1-score curves for probability thresholds

    arbitrary save folder name (config.yaml)

    experiment_name: model
    
    Source code(tar.gz)
    Source code(zip)
  • v0.1.4(Oct 10, 2021)

    • fixed load_20newsgroups.py (#65 #71)
    • added Makefile (#71)
    • added logging confusion matrix (#72)
    • replaced all "valid" occurrences with "test" (#74)
    • updated docstrings (#77)
    • changed python interface - train function returns model and target_names_mapping (#78)
    Source code(tar.gz)
    Source code(zip)
  • v0.1.3(Sep 2, 2021)

  • v0.1.2(Aug 19, 2021)

  • v0.1.1(Aug 11, 2021)

  • v0.1.0(Aug 7, 2021)

Owner
Dani El-Ayyass
NLP Tech Lead @ Sber AI, Master Student in Applied Mathematics and Computer Science @ CMC MSU
Dani El-Ayyass
Twitter-Sentiment-Analysis - Twitter sentiment analysis for india's top online retailers(2019 to 2022)

Twitter-Sentiment-Analysis Twitter sentiment analysis for india's top online retailers(2019 to 2022) Project Overview : Sentiment Analysis helps us to

Balaji R 1 Jan 01, 2022
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 884 Nov 11, 2022
Subtitle Workshop (subshop): tools to download and synchronize subtitles

SUBSHOP Tools to download, remove ads, and synchronize subtitles. SUBSHOP Purpose Limitations Required Web Credentials Installation, Configuration, an

Joe D 4 Feb 13, 2022
Coreference resolution for English, French, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, Explosion AI 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 French 1.2.3 German 1.2

Explosion 70 Dec 12, 2022
Code for the Findings of NAACL 2022(Long Paper): AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks

AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks arXiv link: upcoming To be published in Findings of NA

Allen 16 Nov 12, 2022
Bnagla hand written document digiiztion

Bnagla hand written document digiiztion This repo addresses the problem of digiizing hand written documents in Bangla. Documents have definite fields

Mushfiqur Rahman 1 Dec 10, 2021
Healthsea is a spaCy pipeline for analyzing user reviews of supplementary products for their effects on health.

Welcome to Healthsea ✨ Create better access to health with spaCy. Healthsea is a pipeline for analyzing user reviews to supplement products by extract

Explosion 75 Dec 19, 2022
SentimentArcs: a large ensemble of dozens of sentiment analysis models to analyze emotion in text over time

SentimentArcs - Emotion in Text An end-to-end pipeline based on Jupyter notebooks to detect, extract, process and anlayze emotion over time in text. E

jon_chun 14 Dec 19, 2022
This project consists of data analysis and data visualization (done using python)of all IPL seasons from 2008 to 2019 and answering the most asked questions about the IPL.

IPL-data-analysis This project consists of data analysis and data visualization of all IPL seasons from 2008 to 2019 and answering the most asked ques

Sivateja A T 2 Feb 08, 2022
MicBot - MicBot uses Google Translate to speak everyone's chat messages

MicBot MicBot uses Google Translate to speak everyone's chat messages. It can al

2 Mar 09, 2022
A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. IMPORTANT: (30.08.2020) We moved our models

flair 12.3k Dec 31, 2022
Interpretable Models for NLP using PyTorch

This repo is deprecated. Please find the updated package here. https://github.com/EdGENetworks/anuvada Anuvada: Interpretable Models for NLP using PyT

Sandeep Tammu 19 Dec 17, 2022
Korean Simple Contrastive Learning of Sentence Embeddings using SKT KoBERT and kakaobrain KorNLU dataset

KoSimCSE Korean Simple Contrastive Learning of Sentence Embeddings implementation using pytorch SimCSE Installation git clone https://github.com/BM-K/

34 Nov 24, 2022
A paper list for aspect based sentiment analysis.

Aspect-Based-Sentiment-Analysis A paper list for aspect based sentiment analysis. Survey [IEEE-TAC-20]: Issues and Challenges of Aspect-based Sentimen

jiangqn 419 Dec 20, 2022
Paradigm Shift in NLP - "Paradigm Shift in Natural Language Processing".

Paradigm Shift in NLP Welcome to the webpage for "Paradigm Shift in Natural Language Processing". Some resources of the paper are constantly maintaine

Tianxiang Sun 41 Dec 30, 2022
DeepSpeech - Easy-to-use Speech Toolkit including SOTA ASR pipeline, influential TTS with text frontend and End-to-End Speech Simultaneous Translation.

(简体中文|English) Quick Start | Documents | Models List PaddleSpeech is an open-source toolkit on PaddlePaddle platform for a variety of critical tasks i

5.6k Jan 03, 2023
숭실대학교 컴퓨터학부 전공종합설계프로젝트

✨ 시각장애인을 위한 버스도착 알림 장치 ✨ 👀 개요 현대 사회에서 대중교통 위치 정보를 이용하여 사람들이 간단하게 이용할 대중교통의 정보를 얻고 쉽게 대중교통을 이용할 수 있다. 해당 정보는 각종 어플리케이션과 대중교통 이용시설에서 위치 정보를 제공하고 있지만 시각

taegyun 3 Jan 25, 2022
Text to speech converter with GUI made in Python.

Text-to-speech-with-GUI Text to speech converter with GUI made in Python. To run this download the zip file and run the main file or clone this repo.

SidTheMiner 1 Nov 15, 2021
Official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

This repository is the official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

vanint 101 Dec 30, 2022
HuggingTweets - Train a model to generate tweets

HuggingTweets - Train a model to generate tweets Create in 5 minutes a tweet generator based on your favorite Tweeter Make my own model with the demo

Boris Dayma 318 Jan 04, 2023