Code for our CVPR 2022 Paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection"

Related tags

Deep Learninggen-vlkt
Overview

GEN-VLKT

Code for our CVPR 2022 paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection".

Contributed by Yue Liao*, Aixi Zhang*, Miao Lu, Yongliang Wang, Xiaobo Li and Si Liu.

Installation

Installl the dependencies.

pip install -r requirements.txt

Clone and build CLIP.

git clone https://github.com/openai/CLIP.git && cd CLIP && python setup.py develop && cd ..

Data preparation

HICO-DET

HICO-DET dataset can be downloaded here. After finishing downloading, unpack the tarball (hico_20160224_det.tar.gz) to the data directory.

Instead of using the original annotations files, we use the annotation files provided by the PPDM authors. The annotation files can be downloaded from here. The downloaded annotation files have to be placed as follows.

data
 └─ hico_20160224_det
     |─ annotations
     |   |─ trainval_hico.json
     |   |─ test_hico.json
     |   └─ corre_hico.npy
     :

V-COCO

First clone the repository of V-COCO from here, and then follow the instruction to generate the file instances_vcoco_all_2014.json. Next, download the prior file prior.pickle from here. Place the files and make directories as follows.

GEN-VLKT
 |─ data
 │   └─ v-coco
 |       |─ data
 |       |   |─ instances_vcoco_all_2014.json
 |       |   :
 |       |─ prior.pickle
 |       |─ images
 |       |   |─ train2014
 |       |   |   |─ COCO_train2014_000000000009.jpg
 |       |   |   :
 |       |   └─ val2014
 |       |       |─ COCO_val2014_000000000042.jpg
 |       |       :
 |       |─ annotations
 :       :

For our implementation, the annotation file have to be converted to the HOIA format. The conversion can be conducted as follows.

PYTHONPATH=data/v-coco \
        python convert_vcoco_annotations.py \
        --load_path data/v-coco/data \
        --prior_path data/v-coco/prior.pickle \
        --save_path data/v-coco/annotations

Note that only Python2 can be used for this conversion because vsrl_utils.py in the v-coco repository shows a error with Python3.

V-COCO annotations with the HOIA format, corre_vcoco.npy, test_vcoco.json, and trainval_vcoco.json will be generated to annotations directory.

Pre-trained model

Download the pretrained model of DETR detector for ResNet50, and put it to the params directory.

python ./tools/convert_parameters.py \
        --load_path params/detr-r50-e632da11.pth \
        --save_path params/detr-r50-pre-2branch-hico.pth \
        --num_queries 64

python ./tools/convert_parameters.py \
        --load_path params/detr-r50-e632da11.pth \
        --save_path params/detr-r50-pre-2branch-vcoco.pth \
        --dataset vcoco \
        --num_queries 64

Training

After the preparation, you can start training with the following commands. The whole training is split into two steps: GEN-VLKT base model training and dynamic re-weighting training. The trainings of GEN-VLKT-S for HICO-DET and V-COCO are shown as follows.

HICO-DET

sh ./config/hico_s.sh

V-COCO

sh ./configs/vcoco_s.sh

Zero-shot

sh ./configs/hico_s_zs_nf_uc.sh

Evaluation

HICO-DET

You can conduct the evaluation with trained parameters for HICO-DET as follows.

python -m torch.distributed.launch \
        --nproc_per_node=8 \
        --use_env \
        main.py \
        --pretrained pretrained/hico_gen_vlkt_s.pth \
        --dataset_file hico \
        --hoi_path data/hico_20160224_det \
        --num_obj_classes 80 \
        --num_verb_classes 117 \
        --backbone resnet50 \
        --num_queries 64 \
        --dec_layers 3 \
        --eval \
        --with_clip_label \
        --with_obj_clip_label \
        --use_nms_filter

For the official evaluation (reported in paper), you need to covert the prediction file to a official prediction format following this file, and then follow PPDM evaluation steps.

V-COCO

Firstly, you need the add the following main function to the vsrl_eval.py in data/v-coco.

if __name__ == '__main__':
  import sys

  vsrl_annot_file = 'data/vcoco/vcoco_test.json'
  coco_file = 'data/instances_vcoco_all_2014.json'
  split_file = 'data/splits/vcoco_test.ids'

  vcocoeval = VCOCOeval(vsrl_annot_file, coco_file, split_file)

  det_file = sys.argv[1]
  vcocoeval._do_eval(det_file, ovr_thresh=0.5)

Next, for the official evaluation of V-COCO, a pickle file of detection results have to be generated. You can generate the file with the following command. and then evaluate it as follows.

python generate_vcoco_official.py \
        --param_path pretrained/VCOCO_GEN_VLKT_S.pth \
        --save_path vcoco.pickle \
        --hoi_path data/v-coco \
        --num_queries 64 \
        --dec_layers 3 \
        --use_nms_filter \
        --with_clip_label \
        --with_obj_clip_label

cd data/v-coco
python vsrl_eval.py vcoco.pickle

Zero-shot

python -m torch.distributed.launch \
        --nproc_per_node=8 \
        --use_env \
        main.py \
        --pretrained pretrained/hico_gen_vlkt_s.pth \
        --dataset_file hico \
        --hoi_path data/hico_20160224_det \
        --num_obj_classes 80 \
        --num_verb_classes 117 \
        --backbone resnet50 \
        --num_queries 64 \
        --dec_layers 3 \
        --eval \
        --with_clip_label \
        --with_obj_clip_label \
        --use_nms_filter \
        --zero_shot_type rare_first \
        --del_unseen

Regular HOI Detection Results

HICO-DET

Full (D) Rare (D) Non-rare (D) Full(KO) Rare (KO) Non-rare (KO) Download Conifg
GEN-VLKT-S (R50) 33.75 29.25 35.10 36.78 32.75 37.99 model config
GEN-VLKT-M* (R101) 34.63 30.04 36.01 37.97 33.72 39.24 model config
GEN-VLKT-L (R101) 34.95 31.18 36.08 38.22 34.36 39.37 model config

D: Default, KO: Known object, *: The original model is lost and the provided checkpoint performance is slightly different from the paper reported.

V-COCO

Scenario 1 Scenario 2 Download Config
GEN-VLKT-S (R50) 62.41 64.46 model config
GEN-VLKT-M (R101) 63.28 65.58 model config
GEN-VLKT-L (R101) 63.58 65.93 model config

Zero-shot HOI Detection Results

Type Unseen Seen Full Download Conifg
GEN-VLKT-S RF-UC 21.36 32.91 30.56 model config
GEN-VLKT-S NF-UC 25.05 23.38 23.71 model config
GEN-VLKT-S UO 10.51 28.92 25.63 model config
GEN-VLKT-S UV 20.96 30.23 28.74 model config

Citation

Please consider citing our paper if it helps your research.

@inproceedings{liao2022genvlkt,
  title={GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection},
  author={Yue Liao, Aixi Zhang, Miao Lu, Yongliang Wang, Xiaobo Li, Si Liu},
  booktitle={CVPR},
  year={2022}
}

License

GEN-VLKT is released under the MIT license. See LICENSE for additional details.

Acknowledge

Some of the codes are built upon PPDM, DETR, QPIC and CDN. Thanks them for their great works!

Owner
Yue Liao
PhD candidate at Beihang University
Yue Liao
InvTorch: memory-efficient models with invertible functions

InvTorch: Memory-Efficient Invertible Functions This module extends the functionality of torch.utils.checkpoint.checkpoint to work with invertible fun

Modar M. Alfadly 12 May 12, 2022
A real-time speech emotion recognition application using Scikit-learn and gradio

Speech-Emotion-Recognition-App A real-time speech emotion recognition application using Scikit-learn and gradio. Requirements librosa==0.6.3 numpy sou

Son Tran 6 Oct 04, 2022
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network

DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte

VisDrone 98 Nov 16, 2022
QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

249 Jan 03, 2023
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals, CVPR2021

End-to-End Object Detection with Learnable Proposal, CVPR2021

Peize Sun 1.2k Dec 27, 2022
Spatial color quantization in Rust

rscolorq Rust port of Derrick Coetzee's scolorq, based on the 1998 paper "On spatial quantization of color images" by Jan Puzicha, Markus Held, Jens K

Collyn O'Kane 37 Dec 22, 2022
Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI)

Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI) Preparation Clone the Synchronized-BatchNorm-P

Fangneng Zhan 12 Aug 10, 2022
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
Library for time-series-forecasting-as-a-service.

TIMEX TIMEX (referred in code as timexseries) is a framework for time-series-forecasting-as-a-service. Its main goal is to provide a simple and generi

Alessandro Falcetta 8 Jan 06, 2023
SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model

SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model Edresson Casanova, Christopher Shulby, Eren Gölge, Nicolas Michael Müller, Frede

Edresson Casanova 92 Dec 09, 2022
Measure WWjj polarization fraction

WlWl Polarization Measure WWjj polarization fraction Paper: arXiv:2109.09924 Notice: This code can only be used for the inference process, if you want

4 Apr 10, 2022
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
Load What You Need: Smaller Multilingual Transformers for Pytorch and TensorFlow 2.0.

Smaller Multilingual Transformers This repository shares smaller versions of multilingual transformers that keep the same representations offered by t

Geotrend 79 Dec 28, 2022
Official DGL implementation of "Rethinking High-order Graph Convolutional Networks"

SE Aggregation This is the implementation for Rethinking High-order Graph Convolutional Networks. Here we show the codes for citation networks as an e

Tianqi Zhang (张天启) 32 Jul 19, 2022
Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

4 Dec 22, 2022
Random Forests for Regression with Missing Entries

Random Forests for Regression with Missing Entries These are specific codes used in the article: On the Consistency of a Random Forest Algorithm in th

Irving Gómez-Méndez 1 Nov 15, 2021