CCF BDCI 2020 房产行业聊天问答匹配赛道 A榜47/2985

Overview

CCF BDCI 2020 房产行业聊天问答匹配 A榜47/2985

赛题描述详见:https://www.datafountain.cn/competitions/474

文件说明

data: 存放训练数据和测试数据以及预处理代码

model_bert.py: 网络模型结构定义

adv_train.py: 对抗训练代码

run_bert_pse_adv.py: 运行bert-wwm + 对抗训练 + 伪标签模型

run_roberta_cls_pse_reinit_adv.py: 运行roberta-large last2embedding_cls + reinit + 对抗训练 + 伪标签模型

个人方案

我的baseline是将query和answer拼接后传入预训练好的bert进行特征提取,之后将提取的特征传入一个全连接层,最后接一个softmax进行分类。

其中尝试的预训练模型有bert(谷歌),bert_wwm(哈工大版本),roberta_large(哈工大版本),xlneternie等,其中效果较好的有bert-wwm和roberta-large。之后在baseline的基础上进行了各种尝试,主要尝试有以下:

模型 线上F1
bert-wwm 0.78
bert-wwm + 对抗训练 0.783
bert-wwm + 对抗训练 + 伪标签 0.7879
roberta-large 0.774
roberta-large + reinit + 对抗训练 0.786
roberta-large + reinit+对抗训练 + 伪标签 0.7871
roberta-large last2embedding_cls + reinit + 对抗训练 + 伪标签 0.7879

对抗训练

其基本的原理呢,就是通过添加扰动构造一些对抗样本,放给模型去训练,以攻为守,提高模型在遇到对抗样本时的鲁棒性,同时一定程度也能提高模型的表现和泛化能力。

参考链接:https://zhuanlan.zhihu.com/p/91269728

伪标签

将测试数据和预测结果进行拼接,之后当成训练数据传入到模型中重新进行训练。为了减少对训练数据的原始分布的影响并增加伪标签的置信度,我只在五个采用不同预训练模型的baseline预测一致的数据中采样了6000条测试数据加入到训练集进行训练。

重新初始化

参考链接:如何让Bert在finetune小数据集时更“稳”一点 https://zhuanlan.zhihu.com/p/148720604

大致思想是靠近底部的层(靠近input)学到的是比较通用的语义方面的信息,比如词性、词法等语言学知识,而靠近顶部的层会倾向于学习到接近下游任务的知识,对于预训练来说就是类似masked word prediction、next sentence prediction任务的相关知识。当使用bert预训练模型finetune其他下游任务(比如序列标注)时,如果下游任务与预训练任务差异较大,那么bert顶层的权重所拥有的知识反而会拖累整体的finetune进程,使得模型在finetune初期产生训练不稳定的问题。

因此,我们可以在finetune时,只保留接近底部的bert权重,对于靠近顶部的层的权重,可以重新随机初始化,从头开始学习。

在本次比赛中,我只对最后roberta-large的最后五层进行重新初始化。在实验中,我发现对于bert,重新初始化会降低效果,而roberta-large则有提升。

bert 不同embedding和cls组合

思路主要是参考 CCF BDCI 2019 互联网新闻情感分析 复赛top1解决方案

参考链接:https://github.com/cxy229/BDCI2019-SENTIMENT-CLASSIFICATION

即对bert不同embedding进行组合后传入全连接层进行分类。该方案尝试时间较晚,只实验last2embedding_cls这种组合,结果也确实有提升。

模型融合

对于单模,我采用五折交叉验证,对每一个单模的五个模型结果,我尝试了相加融合和投票的方式,结果是融合相加的线上f1较高

对于不同模型,我也只是采用的相加融合的方式(由于时间问题没有尝试投票和stacking的方式)。最后a榜效果最好的是bert-wwm + 对抗训练 + 伪标签、roberta-large + reinit+对抗训练 + 伪标签、roberta-large last2embedding_cls + reinit + 对抗训练 + 伪标签 三个模型的融合,线上F1有 0.7908 , 排名47;B榜我尝试只对两个效果最好的模型进行融合,即 bert-wwm + 对抗训练 + 伪标签last2embedding_cls + reinit + 对抗训练 + 伪标签,最终F1为0.80,排名72。

总结

本次参加比赛完全是数据挖掘课程要求,也是我第一次参加大数据比赛。因为我的研究方向是图像,所以基本可以说是从零开始,写这个github只是想记录一下这一个月自己从零开始的参赛经历,也希望对同样参加类似比赛的新人有帮助。最后,希望看到了顺手给star,万分感谢。

Owner
shuo
shuo
aMLP Transformer Model for Japanese

aMLP-japanese Japanese aMLP Pretrained Model aMLPとは、Liu, Daiらが提案する、Transformerモデルです。 ざっくりというと、BERTの代わりに使えて、より性能の良いモデルです。 詳しい解説は、こちらの記事などを参考にしてください。 この

tanreinama 13 Aug 11, 2022
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

Tencent 633 Dec 28, 2022
Transformer Based Korean Sentence Spacing Corrector

TKOrrector Transformer Based Korean Sentence Spacing Corrector License Summary This solution is made available under Apache 2 license. See the LICENSE

Paul Hyung Yuel Kim 3 Apr 18, 2022
Code repository for "It's About Time: Analog clock Reading in the Wild"

it's about time Code repository for "It's About Time: Analog clock Reading in the Wild" Packages required: pytorch (used 1.9, any reasonable version s

52 Nov 10, 2022
Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables

Mortgage-Application-Analysis Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables: age, in

1 Jan 29, 2022
Blazing fast language detection using fastText model

Luga A blazing fast language detection using fastText's language models Luga is a Swahili word for language. fastText provides a blazing fast language

Prayson Wilfred Daniel 18 Dec 20, 2022
This repository details the steps in creating a Part of Speech tagger using Trigram Hidden Markov Models and the Viterbi Algorithm without using external libraries.

POS-Tagger This repository details the creation of a Part-of-Speech tagger using Trigram Hidden Markov Models to predict word tags in a word sequence.

Raihan Ahmed 1 Dec 09, 2021
Code to reproduce the results of the paper 'Towards Realistic Few-Shot Relation Extraction' (EMNLP 2021)

Realistic Few-Shot Relation Extraction This repository contains code to reproduce the results in the paper "Towards Realistic Few-Shot Relation Extrac

Bloomberg 8 Nov 09, 2022
DeBERTa: Decoding-enhanced BERT with Disentangled Attention

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 03, 2023
Speech Recognition Database Management with python

Speech Recognition Database Management The main aim of this project is to recogn

Abhishek Kumar Jha 2 Feb 02, 2022
Fake Shakespearean Text Generator

Fake Shakespearean Text Generator This project contains an impelementation of stateful Char-RNN model to generate fake shakespearean texts. Files and

Recep YILDIRIM 1 Feb 15, 2022
Beyond Accuracy: Behavioral Testing of NLP models with CheckList

CheckList This repository contains code for testing NLP Models as described in the following paper: Beyond Accuracy: Behavioral Testing of NLP models

Marco Tulio Correia Ribeiro 1.8k Dec 28, 2022
BERT-based Financial Question Answering System

BERT-based Financial Question Answering System In this example, we use Jina, PyTorch, and Hugging Face transformers to build a production-ready BERT-b

Bithiah Yuan 61 Sep 18, 2022
Analyse japanese ebooks using MeCab to determine the difficulty level for japanese learners

japanese-ebook-analysis This aim of this project is to make analysing the contents of a japanese ebook easy and streamline the process for non-technic

Christoffer Aakre 14 Jul 23, 2022
ChatBotProyect - This is an unfinished project about a simple chatbot.

chatBotProyect This is an unfinished project about a simple chatbot. (union_todo.ipynb) Reminders for the project: Find why one of the vectorizers fai

Tomás 0 Jul 24, 2022
🦅 Pretrained BigBird Model for Korean (up to 4096 tokens)

Pretrained BigBird Model for Korean What is BigBird • How to Use • Pretraining • Evaluation Result • Docs • Citation 한국어 | English What is BigBird? Bi

Jangwon Park 183 Dec 14, 2022
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.09

Keon Lee 142 Jan 06, 2023
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 08, 2023
Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS)

This repository is an implementation of Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS) with a vocoder that works in real-time. Feel free to check my the

Corentin Jemine 38.5k Jan 03, 2023