A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).

Overview

Attention Walk

Arxiv codebeat badge repo sizebenedekrozemberczki

A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018).

Abstract

Graph embedding methods represent nodes in a continuous vector space, preserving different types of relational information from the graph. There are many hyper-parameters to these methods (e.g. the length of a random walk) which have to be manually tuned for every graph. In this paper, we replace previously fixed hyper-parameters with trainable ones that we automatically learn via backpropagation. In particular, we propose a novel attention model on the power series of the transition matrix, which guides the random walk to optimize an upstream objective. Unlike previous approaches to attention models, the method that we propose utilizes attention parameters exclusively on the data itself (e.g. on the random walk), and are not used by the model for inference. We experiment on link prediction tasks, as we aim to produce embeddings that best-preserve the graph structure, generalizing to unseen information. We improve state-of-the-art results on a comprehensive suite of real-world graph datasets including social, collaboration, and biological networks, where we observe that our graph attention model can reduce the error by up to 20%-40%. We show that our automatically-learned attention parameters can vary significantly per graph, and correspond to the optimal choice of hyper-parameter if we manually tune existing methods.

This repository provides an implementation of Attention Walk as described in the paper:

Watch Your Step: Learning Node Embeddings via Graph Attention. Sami Abu-El-Haija, Bryan Perozzi, Rami Al-Rfou, Alexander A. Alemi. NIPS, 2018. [Paper]

The original Tensorflow implementation is available [here].

Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx          2.4
tqdm              4.28.1
numpy             1.15.4
pandas            0.23.4
texttable         1.5.0
scipy             1.1.0
argparse          1.1.0
torch             1.1.0
torchvision       0.3.0

Datasets

The code takes an input graph in a csv file. Every row indicates an edge between two nodes separated by a comma. The first row is a header. Nodes should be indexed starting with 0. Sample graphs for the `Twitch Brasilians` and `Wikipedia Chameleons` are included in the `input/` directory.

### Options

Learning of the embedding is handled by the src/main.py script which provides the following command line arguments.

Input and output options

  --edge-path         STR   Input graph path.     Default is `input/chameleon_edges.csv`.
  --embedding-path    STR   Embedding path.       Default is `output/chameleon_AW_embedding.csv`.
  --attention-path    STR   Attention path.       Default is `output/chameleon_AW_attention.csv`.

Model options

  --dimensions           INT       Number of embeding dimensions.        Default is 128.
  --epochs               INT       Number of training epochs.            Default is 200.
  --window-size          INT       Skip-gram window size.                Default is 5.
  --learning-rate        FLOAT     Learning rate value.                  Default is 0.01.
  --beta                 FLOAT     Attention regularization parameter.   Default is 0.5.
  --gamma                FLOAT     Embedding regularization parameter.   Default is 0.5.
  --num-of-walks         INT       Number of walks per source node.      Default is 80.

Examples

The following commands learn a graph embedding and write the embedding to disk. The node representations are ordered by the ID.

Creating an Attention Walk embedding of the default dataset with the standard hyperparameter settings. Saving this embedding at the default path.

``` python src/main.py ```

Creating an Attention Walk embedding of the default dataset with 256 dimensions.

python src/main.py --dimensions 256

Creating an Attention Walk embedding of the default dataset with a higher window size.

python src/main.py --window-size 20

Creating an embedding of another dataset the Twitch Brasilians. Saving the outputs under custom file names.

python src/main.py --edge-path input/ptbr_edges.csv --embedding-path output/ptbr_AW_embedding.csv --attention-path output/ptbr_AW_attention.csv

License


Comments
  • Nan parameters

    Nan parameters

    Thanks for your pytorch code. I found that my parameters become Nan during training. Nan parameters include model.left_factors, model.right_factors, model.attention. All the entries of them become Nan during training. And also the loss. I'm trying to find the reason. I would appreciate it if you could give me some help or hints.

    opened by kkkkk001 9
  • Memory Error

    Memory Error

    I'm getting OOM errors even with small files. The attached file link_network.txt throws the following error:

    Adjacency matrix powers: 100%|███████████████████████████████████████████████████████| 4/4 [00:00<00:00, 108.39it/s]
    Traceback (most recent call last):
      File "src\main.py", line 79, in <module>
        main()
      File "src\main.py", line 74, in main
        model = AttentionWalkTrainer(args)
      File "E:\AttentionWalk\src\attentionwalk.py", line 70, in __init__
        self.initialize_model_and_features()
      File "E:\AttentionWalk\src\attentionwalk.py", line 76, in initialize_model_and_features
        self.target_tensor = feature_calculator(self.args, self.graph)
      File "E:\AttentionWalk\src\utils.py", line 53, in feature_calculator
        target_matrices = np.array(target_matrices)
    MemoryError
    

    I guess this is due to the large indices of the nodes. Any workarounds for this?

    opened by davidlenz 2
  • modified normalized_adjacency_matrix calculation

    modified normalized_adjacency_matrix calculation

    As mentioned in this issue: https://github.com/benedekrozemberczki/AttentionWalk/issues/9

    Added normalization into calculation, able to prevent unbalanced loss and prevent loss_on_mat to be extreme big while node count of data is big.

    opened by neilctwu 1
  • miscalculations of normalized adjacency matrix

    miscalculations of normalized adjacency matrix

    Thanks for sharing this awesome repo.

    The issue is I found that loss_on_target will become extreme big while training from the original code, and I think is due to the miscalculation of normalized_adjacency_matrix.

    From your original code, normalized_adjacency_matrix is been calculated by:

    normalized_adjacency_matrix = degs.dot(adjacency_matrix)
    

    However while the matrix hasn't been normalize but simply multiple by degree of nodes. I think the part of normalized_adjacency_matrix should be modified like its original definition:

      normalized_adjacency_matrix = degs.power(-1/2)\
                                        .dot(adjacency_matrix)\
                                        .dot(degs.power(-1/2))
    

    It'll turn out to be more reasonable loss shown below: image

    Am I understand it correctly?

    opened by neilctwu 1
  • problem with being killed

    problem with being killed

    Hi, I tried to train the model with new dataset which have about 60000 nodes, but I have a problem of getting Killed suddenly. Do you have any idea why? Thanks :) image

    opened by amy-hyunji 1
  • Directed weighted graphs

    Directed weighted graphs

    Is it possible to use the code with directed and weighted graphs? The paper states the attention walk framework for unweighted graphs only, but i'd like to use it for such types of networks. Thank you for your attention.

    opened by federicoairoldi 1
Releases(v_00001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 114 Jan 06, 2023
A (PyTorch) imbalanced dataset sampler for oversampling low frequent classes and undersampling high frequent ones.

Imbalanced Dataset Sampler Introduction In many machine learning applications, we often come across datasets where some types of data may be seen more

Ming 2k Jan 08, 2023
Cowsay - A rewrite of cowsay in python

Python Cowsay A rewrite of cowsay in python. Allows for parsing of existing .cow

James Ansley 3 Jun 27, 2022
Learning to Map Large-scale Sparse Graphs on Memristive Crossbar

Release of AutoGMap:Learning to Map Large-scale Sparse Graphs on Memristive Crossbar For reproduction of our searched model, the Ubuntu OS is recommen

2 Aug 23, 2022
FG-transformer-TTS Fine-grained style control in transformer-based text-to-speech synthesis

LST-TTS Official implementation for the paper Fine-grained style control in transformer-based text-to-speech synthesis. Submitted to ICASSP 2022. Audi

Li-Wei Chen 64 Dec 30, 2022
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Dec 29, 2022
deep learning model that learns to code with drawing in the Processing language

sketchnet sketchnet - processing code generator can we teach a computer to draw pictures with code. We use Processing and java/jruby code paired with

41 Dec 12, 2022
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)

Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3

Dan Hendrycks 464 Dec 27, 2022
GANTheftAuto is a fork of the Nvidia's GameGAN

Description GANTheftAuto is a fork of the Nvidia's GameGAN, which is research focused on emulating dynamic game environments. The early research done

Harrison 801 Dec 27, 2022
FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning

FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning (FedML) developed and maintained by Scaleout Systems. FEDn enables highly scalable cross-silo and cr

Scaleout 75 Nov 09, 2022
🔮 Execution time predictions for deep neural network training iterations across different GPUs.

Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training Habitat is a tool that predicts a deep neural network's

Geoffrey Yu 44 Dec 27, 2022
LBK 20 Dec 02, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
This repository contains the code for the paper "PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization"

PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization News: [2020/05/04] Added EGL rendering option for training data g

Shunsuke Saito 1.5k Jan 03, 2023
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in clustering (CVPR2021)

PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in Clustering Jang Hyun Cho1, Utkarsh Mall2, Kavita Bala2, Bharath Harihar

Jang Hyun Cho 164 Dec 30, 2022