YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

Related tags

Deep Learningyoltv4
Overview

YOLTv4

Alt text

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitrarily large images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks.

This repository is built upon the impressive work of AlexeyAB's YOLOv4 implementation, which improves both speed and detection performance compared to YOLOv3 (which is implemented in SIMRDWN). We use YOLOv4 insead of "YOLOv5", since YOLOv4 is endorsed by the original creators of YOLO, whereas "YOLOv5" is not; furthermore YOLOv4 appears to have superior performance.

Below, we provide examples of how to use this repository with the open-source Rareplanes dataset.


Running YOLTv4


0. Installation

YOLTv4 is built to execute within a docker container on a GPU-enabled machine. The docker command creates an Ubuntu 16.04 image with CUDA 9.2, python 3.6, and conda.

  1. Clone this repository (e.g. to /yoltv4/).

  2. Download model weights to yoltv4/darknet/weights). See: https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.conv.137 https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.weights https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.weights https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-csp.conv.142

  3. Install nvidia-docker.

  4. Build docker file.

     nvidia-docker build -t yoltv4_image /yoltv4/docker
    
  5. Spin up the docker container (see the docker docs for options).

     NV_GPU=0 nvidia-docker run -it -v /local_data:/local_data -v /yoltv4:/yoltv4 -ti --ipc=host --name yoltv4_gpu0 yoltv4_image
    
  6. Compile the Darknet C program.

    First Set GPU=1 CUDNN=1, CUDNN_HALF=1, OPENCV=1 in /yoltv4/darknet/Makefile, then make:

     cd /yoltv4/darknet
     make
    

1. Train

A. Prepare Data

  1. Make YOLO images and labels (see yoltv4/notebooks/train_test_pipeline.ipynb for further details).

  2. Create a txt file listing the training images.

  3. Create file obj.names file with each desired object name on its own line.

  4. Create file obj.data in the directory yoltv4/darknet/data containing necessary files. For example:

    /yoltv4/darknet/data/rareplanes_train.data

     classes = 30
     train =  /local_data/cosmiq/wdata/rareplanes/train/txt/train.txt
     valid =  /local_data/cosmiq/wdata/rareplanes/train/txt/valid.txt
     names =  /yoltv4/darknet/data/rareplanes.name
     backup = backup/
    
  5. Prepare config files.

    See instructions here, or tweak /yoltv4/darknet/cfg/yoltv4_rareplanes.cfg.

B. Execute Training

  1. Execute.

     cd /yoltv4/darknet
     time ./darknet detector train data/rareplanes_train.data  cfg/yoltv4_rareplanes.cfg weights/yolov4.conv.137  -dont_show -mjpeg_port 8090 -map
    
  2. Review progress (plotted at: /yoltv4/darknet/chart_yoltv4_rareplanes.png).


2. Test

A. Prepare Data

  1. Make sliced images (see yoltv4/notebooks/train_test_pipeline.ipynb for further details).

  2. Create a txt file listing the training images.

  3. Create file obj.data in the directory yoltv4/darknet/data containing necessary files. For example:

    /yoltv4/darknet/data/rareplanes_test.data classes = 30 train = valid = /local_data/cosmiq/wdata/rareplanes/test/txt/test.txt names = /yoltv4/darknet/data/rareplanes.name backup = backup/

B. Execute Testing

  1. Execute (proceeds at >80 frames per second on a Tesla P100):

     cd /yoltv4/darknet
     time ./darknet detector valid data/rareplanes_test.data cfg/yoltv4_rareplanes.cfg backup/ yoltv4_rareplanes_best.weights
    
  2. Post-process detections:

    A. Move detections into results directory

     mkdir /yoltv4/darknet/results/rareplanes_preds_v0
     mkdir  /yoltv4/darknet/results/rareplanes_preds_v0/orig_txt
     mv /yoltv4/darknet/results/comp4_det_test_*  /yoltv4/darknet/results/rareplanes_preds_v0/orig_txt/
    

    B. Stitch detections back together and make plots

     time python /yoltv4/yoltv4/post_process.py \
         --pred_dir=/yoltv4/darknet/results/rareplanes_preds_v0/orig_txt/ \
         --raw_im_dir=/local_data/cosmiq/wdata/rareplanes/test/images/ \
         --sliced_im_dir=/local_data/cosmiq/wdata/rareplanes/test/yoltv4/images_slice/ \
         --out_dir= /yoltv4/darknet/results/rareplanes_preds_v0 \
         --detection_thresh=0.25 \
         --slice_size=416} \
         --n_plots=8
    

Outputs will look something like the figures below:

Alt text

Alt text

Alt text

Owner
Adam Van Etten
Adam Van Etten
Find the Heart simple Python Game

This is a simple Python game for finding a heart emoji. There is a 3 x 3 matrix in which a heart emoji resides. The location of the heart is randomized and is not revealed. The player must guess the

p.katekomol 1 Jan 24, 2022
Аналитика доходности инвестиционного портфеля в Тинькофф брокере

Аналитика доходности инвестиционного портфеля Тиньков Видео на YouTube Для работы скрипта нужно установить три переменных окружения: export TINKOFF_TO

Alexey Goloburdin 64 Dec 17, 2022
(NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductive few-shot classification"

SSR (NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductivefew-shot classification" [Paper] [Project webpage]

xshen 29 Dec 06, 2022
Udacity's CS101: Intro to Computer Science - Building a Search Engine

Udacity's CS101: Intro to Computer Science - Building a Search Engine All soluti

Phillip 0 Feb 26, 2022
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022
Codebase for Diffusion Models Beat GANS on Image Synthesis.

Codebase for Diffusion Models Beat GANS on Image Synthesis.

Katherine Crowson 128 Dec 02, 2022
A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION

CFN-SR A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION The audio-video based multimodal

skeleton 15 Sep 26, 2022
Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification

DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification Official Implementation for the pape

Anh M. Nguyen 36 Dec 28, 2022
Compare outputs between layers written in Tensorflow and layers written in Pytorch

Compare outputs of Wasserstein GANs between TensorFlow vs Pytorch This is our testing module for the implementation of improved WGAN in Pytorch Prereq

Hung Nguyen 72 Dec 20, 2022
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022
Find-Lane-Line - Use openCV library and Python to detect the road-lane-line

Find-Lane-Line This project is to use openCV library and Python to detect the road-lane-line. Data Pipeline Step one : Color Selection Step two : Cann

Kenny Cheng 3 Aug 17, 2022
Exadel CompreFace is a free and open-source face recognition GitHub project

Exadel CompreFace is a leading free and open-source face recognition system Exadel CompreFace is a free and open-source face recognition service that

Exadel 2.6k Jan 04, 2023
Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capability)

Protein GLM (wip) Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capabil

Phil Wang 17 May 06, 2022
Official repository for: Continuous Control With Ensemble DeepDeterministic Policy Gradients

Continuous Control With Ensemble Deep Deterministic Policy Gradients This repository is the official implementation of Continuous Control With Ensembl

4 Dec 06, 2021
This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints

CLGo This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints An earlier

刘芮金 32 Dec 20, 2022
Revealing and Protecting Labels in Distributed Training

Revealing and Protecting Labels in Distributed Training

Google Interns 0 Nov 09, 2022
Code for the submitted paper Surrogate-based cross-correlation for particle image velocimetry

Surrogate-based cross-correlation (SBCC) This repository contains code for the submitted paper Surrogate-based cross-correlation for particle image ve

5 Jun 30, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion. NÜWA is a unified multimodal p

Microsoft 2.6k Jan 06, 2023
Code for Ditto: Building Digital Twins of Articulated Objects from Interaction

Ditto: Building Digital Twins of Articulated Objects from Interaction Zhenyu Jiang, Cheng-Chun Hsu, Yuke Zhu CVPR 2022, Oral Project | arxiv News 2022

UT Robot Perception and Learning Lab 78 Dec 22, 2022