This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

Overview

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video]

Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang

CVPR 2021

This is re-implementation of TransGAN: Two Transformers Can Make One Strong GAN, and That Can Scale Up, CVPR 2021 in PyTorch.

Generative Adversarial Networks-GAN builded completely free of Convolutions and used Transformers architectures which became popular since Vision Transformers-ViT. In this implementation, CIFAR-10 dataset was used.

0 Epoch 40 Epoch 100 Epoch 200 Epoch

Related Work - Vision Transformers (ViT)

In this implementation, as a discriminator, Vision Transformer(ViT) Block was used. In order to get more info about ViT, you can look at the original paper here

Credits for illustration of ViT: @lucidrains

Installation

Before running train.py, check whether you have libraries in requirements.txt! Also, create ./fid_stat folder and download the fid_stats_cifar10_train.npz file in this folder. To save your model during training, create ./checkpoint folder using mkdir checkpoint.

Training

python train.py

Pretrained Model

You can find pretrained model here. You can download using:

wget https://drive.google.com/file/d/134GJRMxXFEaZA0dF-aPpDS84YjjeXPdE/view

or

curl gdrive.sh | bash -s https://drive.google.com/file/d/134GJRMxXFEaZA0dF-aPpDS84YjjeXPdE/view

License

MIT

Citation

@article{jiang2021transgan,
  title={TransGAN: Two Transformers Can Make One Strong GAN},
  author={Jiang, Yifan and Chang, Shiyu and Wang, Zhangyang},
  journal={arXiv preprint arXiv:2102.07074},
  year={2021}
}
@article{dosovitskiy2020,
  title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale},
  author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and  Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil},
  journal={arXiv preprint arXiv:2010.11929},
  year={2020}
}
@inproceedings{zhao2020diffaugment,
  title={Differentiable Augmentation for Data-Efficient GAN Training},
  author={Zhao, Shengyu and Liu, Zhijian and Lin, Ji and Zhu, Jun-Yan and Han, Song},
  booktitle={Conference on Neural Information Processing Systems (NeurIPS)},
  year={2020}
}
Comments
  • GPU memory, Modifying batch size

    GPU memory, Modifying batch size

    Hello,

    I saw your comment in VITA-Group's implementation of TransGAN and started looking at your implementation here.

    Without modifying anything and attempting to run "python train.py" results in CUDA out of memory; I believe the GPU I'm using cannot handle the model size/training images that you've specified. I tried editing the batch size on lines 35 and 36 of train.py (--gener_batch_size, changing default from 64 to 32, etc.), but I get a RuntimeError of:

    Output 0 of UnbindBackward is a view and is being modified inplace. This view is the output of a function that returns multiple views. Such fuctions do not allow the otutput views to be modified inplace. You should replace the inplace operation by an out-of-place one.

    My two questions are:

    1. How would you suggest modifying the training parameters to deal with GPU running out of memory? and,
    2. Is there a better way to edit the batch size, and what else do I need to change in order for the code to not break when the batch size is changed?

    Thanks!

    opened by Andrew-X-Wang 10
  • Create your own FID stats file

    Create your own FID stats file

    Hello and thanks for the implementation. I'm trying to train this model on a different datset, but to do so I need a custom fid_stats file for my dataset. How can I create it ?

    opened by IlyasMoutawwakil 2
  • FID score: nan

    FID score: nan

    Thank you for your contribution. But in the training processing, FID score is Nan. I want to known whether it is appropriate. Should I make some chance to solve this problem?

    opened by Jamie-Cheung 1
  • TransGAN fid problem

    TransGAN fid problem

    hello,I would like to humbly ask you what is the difference beetween TransGAN-main and TransGAN-master?can Trans-main reproduce similar results of the original paper? The results obtained by using CIFAR in TransGAN-main are quite different from those in the paper,and WGAN-EP loss concussion,so I want to ask you.

    opened by Stephenlove 1
  • How do you test on your own dataset with the checkpoint.pth generated?

    How do you test on your own dataset with the checkpoint.pth generated?

    I want to use the checkpoint saved to generate my own results from a testing dataset and use those images later to calculate my own evaluation metrics. Please help

    opened by meh-naz 0
Releases(v2.0)
Owner
Ahmet Sarigun
Yet, another human being!
Ahmet Sarigun
Python codes for Lite Audio-Visual Speech Enhancement.

Lite Audio-Visual Speech Enhancement (Interspeech 2020) Introduction This is the PyTorch implementation of Lite Audio-Visual Speech Enhancement (LAVSE

Shang-Yi Chuang 85 Dec 01, 2022
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

8 Jul 09, 2021
Code for the paper "Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks"

ON-LSTM This repository contains the code used for word-level language model and unsupervised parsing experiments in Ordered Neurons: Integrating Tree

Yikang Shen 572 Nov 21, 2022
MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

MultiMix This repository contains the implementation of MultiMix. Our publications for this project are listed below: "MultiMix: Sparingly Supervised,

Ayaan Haque 27 Dec 22, 2022
🎁 3,000,000+ Unsplash images made available for research and machine learning

The Unsplash Dataset The Unsplash Dataset is made up of over 250,000+ contributing global photographers and data sourced from hundreds of millions of

Unsplash 2k Jan 03, 2023
The code from the paper Character Transformations for Non-Autoregressive GEC Tagging

Character Transformations for Non-Autoregressive GEC Tagging Milan Straka, Jakub Náplava, Jana Straková Charles University Faculty of Mathematics and

ÚFAL 5 Dec 10, 2022
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

J K Terry 32 Nov 09, 2021
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
A highly efficient, fast, powerful and light-weight anime downloader and streamer for your favorite anime.

AnimDL - Download & Stream Your Favorite Anime AnimDL is an incredibly powerful tool for downloading and streaming anime. Core features Abuses the dev

KR 759 Jan 08, 2023
A tf.keras implementation of Facebook AI's MadGrad optimization algorithm

MADGRAD Optimization Algorithm For Tensorflow This package implements the MadGrad Algorithm proposed in Adaptivity without Compromise: A Momentumized,

20 Aug 18, 2022
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices Abstract For practical deep neural network design on mobile devices, it is e

11 Dec 30, 2022
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Phil Tabor 159 Dec 28, 2022
MultiTaskLearning - Multi Task Learning for 3D segmentation

Multi Task Learning for 3D segmentation Perception stack of an Autonomous Drivin

2 Sep 22, 2022
Python Fanduel API (2021) - Lineup Automation

Southpaw is a python package that provides access to the Fanduel API. Optimize your DFS experience by programmatically updating your lineups, analyzin

Brandin Canfield 13 Jan 04, 2023
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 05, 2023
Reproduction of Vision Transformer in Tensorflow2. Train from scratch and Finetune.

Vision Transformer(ViT) in Tensorflow2 Tensorflow2 implementation of the Vision Transformer(ViT). This repository is for An image is worth 16x16 words

sungjun lee 42 Dec 27, 2022
Multi-task head pose estimation in-the-wild

Multi-task head pose estimation in-the-wild We provide C++ code in order to replicate the head-pose experiments in our paper https://ieeexplore.ieee.o

Roberto Valle 26 Oct 06, 2022
Predictive Maintenance LSTM

Predictive-Maintenance-LSTM - Predictive maintenance study for Complex case study, we've obtained failure causes by operational error and more deeply by design mistakes.

Amir M. Sadafi 1 Dec 31, 2021