treeinterpreter - Interpreting scikit-learn's decision tree and random forest predictions.

Overview

TreeInterpreter

Package for interpreting scikit-learn's decision tree and random forest predictions. Allows decomposing each prediction into bias and feature contribution components as described in http://blog.datadive.net/interpreting-random-forests/. For a dataset with n features, each prediction on the dataset is decomposed as prediction = bias + feature_1_contribution + ... + feature_n_contribution.

It works on scikit-learn's

  • DecisionTreeRegressor
  • DecisionTreeClassifier
  • ExtraTreeRegressor
  • ExtraTreeClassifier
  • RandomForestRegressor
  • RandomForestClassifier
  • ExtraTreesRegressor
  • ExtraTreesClassifier

Free software: BSD license

Dependencies

  • scikit-learn 0.17+

Installation

The easiest way to install the package is via pip:

$ pip install treeinterpreter

Usage

from treeinterpreter import treeinterpreter as ti
# fit a scikit-learn's regressor model
rf = RandomForestRegressor()
rf.fit(trainX, trainY)

prediction, bias, contributions = ti.predict(rf, testX)

Prediction is the sum of bias and feature contributions:

assert(numpy.allclose(prediction, bias + np.sum(contributions, axis=1)))
assert(numpy.allclose(rf.predict(testX), bias + np.sum(contributions, axis=1)))

More usage examples at http://blog.datadive.net/random-forest-interpretation-with-scikit-learn/.

Owner
Ando Saabas
Ando Saabas
Visual analysis and diagnostic tools to facilitate machine learning model selection.

Yellowbrick Visual analysis and diagnostic tools to facilitate machine learning model selection. What is Yellowbrick? Yellowbrick is a suite of visual

District Data Labs 3.9k Dec 30, 2022
Pytorch implementation of convolutional neural network visualization techniques

Convolutional Neural Network Visualizations This repository contains a number of convolutional neural network visualization techniques implemented in

Utku Ozbulak 7k Jan 03, 2023
JittorVis - Visual understanding of deep learning model.

JittorVis - Visual understanding of deep learning model.

182 Jan 06, 2023
A library that implements fairness-aware machine learning algorithms

Themis ML themis-ml is a Python library built on top of pandas and sklearnthat implements fairness-aware machine learning algorithms. Fairness-aware M

Niels Bantilan 105 Dec 30, 2022
treeinterpreter - Interpreting scikit-learn's decision tree and random forest predictions.

TreeInterpreter Package for interpreting scikit-learn's decision tree and random forest predictions. Allows decomposing each prediction into bias and

Ando Saabas 720 Dec 22, 2022
Portal is the fastest way to load and visualize your deep neural networks on images and videos ๐Ÿ”ฎ

Portal is the fastest way to load and visualize your deep neural networks on images and videos ๐Ÿ”ฎ

Datature 243 Jan 05, 2023
๐Ÿ‘‹๐ŸฆŠ Xplique is a Python toolkit dedicated to explainability, currently based on Tensorflow.

๐Ÿ‘‹๐ŸฆŠ Xplique is a Python toolkit dedicated to explainability, currently based on Tensorflow.

DEEL 343 Jan 02, 2023
Python Library for Model Interpretation/Explanations

Skater Skater is a unified framework to enable Model Interpretation for all forms of model to help one build an Interpretable machine learning system

Oracle 1k Dec 27, 2022
An Empirical Review of Optimization Techniques for Quantum Variational Circuits

QVC Optimizer Review Code for the paper "An Empirical Review of Optimization Techniques for Quantum Variational Circuits". Each of the python files ca

Owen Lockwood 5 Jun 28, 2022
Auralisation of learned features in CNN (for audio)

AuralisationCNN This repo is for an example of auralisastion of CNNs that is demonstrated on ISMIR 2015. Files auralise.py: includes all required func

Keunwoo Choi 39 Nov 19, 2022
Code for "High-Precision Model-Agnostic Explanations" paper

Anchor This repository has code for the paper High-Precision Model-Agnostic Explanations. An anchor explanation is a rule that sufficiently โ€œanchorsโ€

Marco Tulio Correia Ribeiro 735 Jan 05, 2023
A collection of research papers and software related to explainability in graph machine learning.

A collection of research papers and software related to explainability in graph machine learning.

AstraZeneca 1.9k Dec 26, 2022
Delve is a Python package for analyzing the inference dynamics of your PyTorch model.

Delve is a Python package for analyzing the inference dynamics of your PyTorch model.

Delve 73 Dec 12, 2022
python partial dependence plot toolbox

PDPbox python partial dependence plot toolbox Motivation This repository is inspired by ICEbox. The goal is to visualize the impact of certain feature

Li Jiangchun 722 Dec 30, 2022
Pytorch Feature Map Extractor

MapExtrackt Convolutional Neural Networks Are Beautiful We all take our eyes for granted, we glance at an object for an instant and our brains can ide

Lewis Morris 40 Dec 07, 2022
ModelChimp is an experiment tracker for Deep Learning and Machine Learning experiments.

ModelChimp What is ModelChimp? ModelChimp is an experiment tracker for Deep Learning and Machine Learning experiments. ModelChimp provides the followi

ModelChimp 124 Dec 21, 2022
A library for debugging/inspecting machine learning classifiers and explaining their predictions

ELI5 ELI5 is a Python package which helps to debug machine learning classifiers and explain their predictions. It provides support for the following m

2.6k Dec 30, 2022
Interactive convnet features visualization for Keras

Quiver Interactive convnet features visualization for Keras The quiver workflow Video Demo Build your model in keras model = Model(...) Launch the vis

Keplr 1.7k Dec 21, 2022
โฌ› Python Individual Conditional Expectation Plot Toolbox

โฌ› PyCEbox Python Individual Conditional Expectation Plot Toolbox A Python implementation of individual conditional expecation plots inspired by R's IC

Austin Rochford 140 Dec 30, 2022
Contrastive Explanation (Foil Trees), developed at TNO/Utrecht University

Contrastive Explanation (Foil Trees) Contrastive and counterfactual explanations for machine learning (ML) Marcel Robeer (2018-2020), TNO/Utrecht Univ

M.J. Robeer 41 Aug 29, 2022