The InterScript dataset contains interactive user feedback on scripts generated by a T5-XXL model.

Overview

Interscript

The Interscript dataset contains interactive user feedback on a T5-11B model generated scripts.

overview


Dataset

  • data.json contains the data in an easy to read JSON format. data.jsonl contains the data in a JSONL format. The file contains 8466 samples, one sample per line. Every sample is a JSON object with the following fields:
 {
        "input_script": "push chair in -> pull chair in; pull chair in -> push chair against wall; push chair against wall -> straighten chair legs; straighten chair legs -> Push all chairs in; line up the chairs -> push chair in",
        "input_feedback": "One would not pull chair in if they had initially pushed it in.",
        "output_script": "push chair against wall -> straighten chair legs;straighten chair legs -> Push all chairs in;line up the chairs -> push chair in;push chair in -> push chair against wall",
        "metadata": {
            "id": "301KG0KX9BKTC0HB7Z9SV1Y5HAFH2Y.2_implicit.gp",
            "goal": "push all chairs in",
            "is_distractor": false,
            "feedback_type": "implicit.gp",
            "edit": "Remove node 'pull chair in'",
            "input_script_formatted": [
                "1. line up the chairs",
                "2. push chair in",
                "3. pull chair in",
                "4. push chair against wall",
                "5. straighten chair legs",
                "6. Push all chairs in"
            ],
            "output_script_formatted": [
                "1. line up the chairs",
                "2. push chair in",
                "3. push chair against wall",
                "4. straighten chair legs",
                "5. Push all chairs in"
            ]
        }
    }

The description of the fields is as follows:

  1. input_script: Model generated script $y_{bad}$.
  2. input_feedback: User feedback on the input script $f$.
  3. output_script: Fixed output script $y_{good}$.

Metadata contains additional information about the sample. Some important fields are:

  1. id: Unique identifier of the sample.
  2. goal: Goal of the script.
  3. is_distractor: Whether the feedback is a distractor (please see Section 4 for more details).
  4. feedback_type: Type of feedback (please see Section 4 "Annotation" for more details).
  5. edit: The input_feedback presented as an edit operation on the input script, that is, the edit operation that transforms the input script into the output script.
  6. input_script_formatted: The input script presented as a list of sentences.
  7. output_script_formatted: The output script presented as a list of sentences.

Data collection process

  • We use Amazon Mechanical Turk to collect feedback on erroneous scripts from users.
  • An overview of the process is captured in the following figure:

datacollection

Amazon Mechanical Turk Template

Publication describing 3 ML examples at NSLS-II and interfacing into Bluesky

Machine learning enabling high-throughput and remote operations at large-scale user facilities. Overview This repository contains the source code and

BNL 4 Sep 24, 2022
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Jonas Köhler 893 Dec 28, 2022
Implementation of paper "DeepTag: A General Framework for Fiducial Marker Design and Detection"

Implementation of paper DeepTag: A General Framework for Fiducial Marker Design and Detection. Project page: https://herohuyongtao.github.io/research/

Yongtao Hu 46 Dec 12, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

AI Summer 65 Sep 12, 2022
How to Predict Stock Prices Easily Demo

How-to-Predict-Stock-Prices-Easily-Demo How to Predict Stock Prices Easily - Intro to Deep Learning #7 by Siraj Raval on Youtube ##Overview This is th

Siraj Raval 752 Nov 16, 2022
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning

advantage-weighted-regression Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning, by Peng et al. (

Omar D. Domingues 1 Dec 02, 2021
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
Focal and Global Knowledge Distillation for Detectors

FGD Paper: Focal and Global Knowledge Distillation for Detectors Install MMDetection and MS COCO2017 Our codes are based on MMDetection. Please follow

Mesopotamia 261 Dec 23, 2022
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Tracy (Shengmin) Tao 1 Apr 12, 2022
A python library to build Model Trees with Linear Models at the leaves.

A python library to build Model Trees with Linear Models at the leaves.

Marco Cerliani 212 Dec 30, 2022
Tensorflow implementation for "Improved Transformer for High-Resolution GANs" (NeurIPS 2021).

HiT-GAN Official TensorFlow Implementation HiT-GAN presents a Transformer-based generator that is trained based on Generative Adversarial Networks (GA

Google Research 78 Oct 31, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
Graph parsing approach to structured sentiment analysis.

Fine-grained Sentiment Analysis as Dependency Graph Parsing This repository contains the code and datasets described in following paper: Fine-grained

Jeremy Barnes 36 Dec 12, 2022
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022