Code associated with the Don't Stop Pretraining ACL 2020 paper

Overview

dont-stop-pretraining

Code associated with the Don't Stop Pretraining ACL 2020 paper

Citation

@inproceedings{dontstoppretraining2020,
 author = {Suchin Gururangan and Ana Marasović and Swabha Swayamdipta and Kyle Lo and Iz Beltagy and Doug Downey and Noah A. Smith},
 title = {Don't Stop Pretraining: Adapt Language Models to Domains and Tasks},
 year = {2020},
 booktitle = {Proceedings of ACL},
}

Installation

conda env create -f environment.yml
conda activate domains

Working with the latest allennlp version

This repository works with a pinned allennlp version for reproducibility purposes. This pinned version of allennlp relies on pytorch-transformers==1.2.0, which requires you to manually download custom transformer models on disk.

To run this code with the latest allennlp/ transformers version (and use the huggingface model repository to its full capacity) checkout the branch latest-allennlp. Caution that we haven't tested out all models on this branch, so your results may vary from what we report in paper.

If you'd like to use this pinned allennlp version, read on. Otherwise, checkout latest-allennlp.

Available Pretrained Models

We've uploaded DAPT and TAPT models to huggingface.

DAPT models

Available DAPT models:

allenai/cs_roberta_base
allenai/biomed_roberta_base
allenai/reviews_roberta_base
allenai/news_roberta_base

TAPT models

Available TAPT models:

allenai/dsp_roberta_base_dapt_news_tapt_ag_115K
allenai/dsp_roberta_base_tapt_ag_115K
allenai/dsp_roberta_base_dapt_reviews_tapt_amazon_helpfulness_115K
allenai/dsp_roberta_base_tapt_amazon_helpfulness_115K
allenai/dsp_roberta_base_dapt_biomed_tapt_chemprot_4169
allenai/dsp_roberta_base_tapt_chemprot_4169
allenai/dsp_roberta_base_dapt_cs_tapt_citation_intent_1688
allenai/dsp_roberta_base_tapt_citation_intent_1688
allenai/dsp_roberta_base_dapt_news_tapt_hyperpartisan_news_5015
allenai/dsp_roberta_base_dapt_news_tapt_hyperpartisan_news_515
allenai/dsp_roberta_base_tapt_hyperpartisan_news_5015
allenai/dsp_roberta_base_tapt_hyperpartisan_news_515
allenai/dsp_roberta_base_dapt_reviews_tapt_imdb_20000
allenai/dsp_roberta_base_dapt_reviews_tapt_imdb_70000
allenai/dsp_roberta_base_tapt_imdb_20000
allenai/dsp_roberta_base_tapt_imdb_70000
allenai/dsp_roberta_base_dapt_biomed_tapt_rct_180K
allenai/dsp_roberta_base_tapt_rct_180K
allenai/dsp_roberta_base_dapt_biomed_tapt_rct_500
allenai/dsp_roberta_base_tapt_rct_500
allenai/dsp_roberta_base_dapt_cs_tapt_sciie_3219
allenai/dsp_roberta_base_tapt_sciie_3219

The final numbers in each model above are the dataset sizes. Larger dataset sizes (e.g. imdb_70000 vs. imdb_20000) are curated TAPT models. These only exist for imdb, rct, and hyperpartisan_news.

Downloading Pretrained models

You can download a pretrained model using the scripts/download_model.py script.

Just supply a model type and serialization directory, like so:

python -m scripts.download_model \
        --model allenai/dsp_roberta_base_dapt_cs_tapt_citation_intent_1688 \
        --serialization_dir $(pwd)/pretrained_models/dsp_roberta_base_dapt_cs_tapt_citation_intent_1688

This will output the allenai/dsp_roberta_base_dapt_cs_tapt_citation_intent_1688 model for Citation Intent corpus in $(pwd)/pretrained_models/dsp_roberta_base_dapt_cs_tapt_citation_intent_1688

Downloading data

All task data is available on a public S3 url; check environments/datasets.py.

If you run the scripts/train.py command (see next step), we will automatically download the relevant dataset(s) using the URLs in environments/datasets.py. However, if you'd like to download the data for use outside of this repository, you will have to curl each dataset individually:

curl -Lo train.jsonl https://allennlp.s3-us-west-2.amazonaws.com/dont_stop_pretraining/data/chemprot/train.jsonl
curl -Lo dev.jsonl https://allennlp.s3-us-west-2.amazonaws.com/dont_stop_pretraining/data/chemprot/dev.jsonl
curl -Lo test.jsonl https://allennlp.s3-us-west-2.amazonaws.com/dont_stop_pretraining/data/chemprot/test.jsonl

Example commands

Run basic RoBERTa model

The following command will train a RoBERTa classifier on the Citation Intent corpus. Check environments/datasets.py for other datasets you can pass to the --dataset flag.

python -m scripts.train \
        --config training_config/classifier.jsonnet \
        --serialization_dir model_logs/citation_intent_base \
        --hyperparameters ROBERTA_CLASSIFIER_SMALL \
        --dataset citation_intent \
        --model roberta-base \
        --device 0 \
        --perf +f1 \
        --evaluate_on_test

You can supply other downloaded models to this script, by providing a path to the model:

python -m scripts.train \
        --config training_config/classifier.jsonnet \
        --serialization_dir model_logs/citation-intent-dapt-dapt \
        --hyperparameters ROBERTA_CLASSIFIER_SMALL \
        --dataset citation_intent \
        --model $(pwd)/pretrained_models/dsp_roberta_base_dapt_cs_tapt_citation_intent_1688 \
        --device 0 \
        --perf +f1 \
        --evaluate_on_test

Perform hyperparameter search

First, install allentune: https://github.com/allenai/allentune

Modify search_space/classifier.jsonnet accordingly.

Then run:

allentune search \
            --experiment-name ag_search \
            --num-cpus 56 \
            --num-gpus 4 \
            --search-space search_space/classifier.jsonnet \
            --num-samples 100 \
            --base-config training_config/classifier.jsonnet  \
            --include-package dont_stop_pretraining

Modify --num-gpus and --num-samples accordingly.

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 68 Jan 06, 2023
Dual languaged (rus+eng) tool for packing and unpacking archives of Silky Engine.

SilkyArcTool English Dual languaged (rus+eng) GUI tool for packing and unpacking archives of Silky Engine. It is not the same arc as used in Ai6WIN. I

Tester 5 Sep 15, 2022
Ukrainian TTS (text-to-speech) using Coqui TTS

title emoji colorFrom colorTo sdk app_file pinned Ukrainian TTS 🐸 green green gradio app.py false Ukrainian TTS 📢 🤖 Ukrainian TTS (text-to-speech)

Yurii Paniv 85 Dec 26, 2022
Exploration of BERT-based models on twitter sentiment classifications

twitter-sentiment-analysis Explore the relationship between twitter sentiment of Tesla and its stock price/return. Explore the effect of different BER

Sammy Cui 2 Oct 02, 2022
Command Line Text-To-Speech using Google TTS

cli-tts Thanks to gTTS by @pndurette! This is an interactive command line text-to-speech tool using Google TTS. Just type text and the voice will be p

ReekyStive 3 Nov 11, 2022
FireFlyer Record file format, writer and reader for DL training samples.

FFRecord The FFRecord format is a simple format for storing a sequence of binary records developed by HFAiLab, which supports random access and Linux

77 Jan 04, 2023
GSoC'2021 | TensorFlow implementation of Wav2Vec2

GSoC'2021 | TensorFlow implementation of Wav2Vec2

Vasudev Gupta 73 Nov 28, 2022
Utilize Korean BERT model in sentence-transformers library

ko-sentence-transformers 이 프로젝트는 KoBERT 모델을 sentence-transformers 에서 보다 쉽게 사용하기 위해 만들어졌습니다. Ko-Sentence-BERT-SKTBERT 프로젝트에서는 KoBERT 모델을 sentence-trans

Junghyun 40 Dec 20, 2022
Trex is a tool to match semantically similar functions based on transfer learning.

Trex is a tool to match semantically similar functions based on transfer learning.

62 Dec 28, 2022
Linear programming solver for paper-reviewer matching and mind-matching

Paper-Reviewer Matcher A python package for paper-reviewer matching algorithm based on topic modeling and linear programming. The algorithm is impleme

Titipat Achakulvisut 66 Jul 05, 2022
Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks

Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks. It takes raw videos/images + text as inputs, and outputs task predictions. ClipB

Jie Lei 雷杰 612 Jan 04, 2023
A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You can find two approaches for achieving this in this repo.

multitask-learning-transformers A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You

Shahrukh Khan 48 Jan 02, 2023
HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools

HuggingSound HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools. I have no intention of building a very complex tool here.

Jonatas Grosman 247 Dec 26, 2022
Simple Annotated implementation of GPT-NeoX in PyTorch

Simple Annotated implementation of GPT-NeoX in PyTorch This is a simpler implementation of GPT-NeoX in PyTorch. We have taken out several optimization

labml.ai 101 Dec 03, 2022
SciBERT is a BERT model trained on scientific text.

SciBERT is a BERT model trained on scientific text.

AI2 1.2k Dec 24, 2022
NeMo: a toolkit for conversational AI

NVIDIA NeMo Introduction NeMo is a toolkit for creating Conversational AI applications. NeMo product page. Introductory video. The toolkit comes with

NVIDIA Corporation 5.3k Jan 04, 2023
NLP Text Classification

多标签文本分类任务 近年来随着深度学习的发展,模型参数的数量飞速增长。为了训练这些参数,需要更大的数据集来避免过拟合。然而,对于大部分NLP任务来说,构建大规模的标注数据集非常困难(成本过高),特别是对于句法和语义相关的任务。相比之下,大规模的未标注语料库的构建则相对容易。为了利用这些数据,我们可以

Jason 1 Nov 11, 2021
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 881 Jan 03, 2023
Korean stereoypte detector with TUNiB-Electra and K-StereoSet

Korean Stereotype Detector Korean stereotype sentence classifier using K-StereoSet with TUNiB-Electra Web demo you can test this model easily in demo

Sae_Chan_Oh 11 Feb 18, 2022