DeepOBS: A Deep Learning Optimizer Benchmark Suite

Related tags

Deep LearningDeepOBS
Overview

DeepOBS - A Deep Learning Optimizer Benchmark Suite

DeepOBS

PyPI version Documentation Status License: MIT

DeepOBS is a benchmarking suite that drastically simplifies, automates and improves the evaluation of deep learning optimizers.

It can evaluate the performance of new optimizers on a variety of real-world test problems and automatically compare them with realistic baselines.

DeepOBS automates several steps when benchmarking deep learning optimizers:

  • Downloading and preparing data sets.
  • Setting up test problems consisting of contemporary data sets and realistic deep learning architectures.
  • Running the optimizers on multiple test problems and logging relevant metrics.
  • Reporting and visualization the results of the optimizer benchmark.

DeepOBS Output

This branch contains the beta of version 1.2.0 with TensorFlow and PyTorch support. It is currently in a pre-release state. Not all features are implemented and most notably we currently don't provide baselines for this version.

The full documentation of this beta version is available on readthedocs: https://deepobs-with-pytorch.readthedocs.io/

The paper describing DeepOBS has been accepted for ICLR 2019 and can be found here: https://openreview.net/forum?id=rJg6ssC5Y7

If you find any bugs in DeepOBS, or find it hard to use, please let us know. We are always interested in feedback and ways to improve DeepOBS.

Installation

pip install -e git+https://github.com/fsschneider/[email protected]#egg=DeepOBS

We tested the package with Python 3.6, TensorFlow version 1.12, Torch version 1.1.0 and Torchvision version 0.3.0. Other versions might work, and we plan to expand compatibility in the future.

Further tutorials and a suggested protocol for benchmarking deep learning optimizers can be found on https://deepobs-with-pytorch.readthedocs.io/

Comments
  • Request: Share the hyper-parameters found in the grid search

    Request: Share the hyper-parameters found in the grid search

    To lessen the burden of re-running the benchmark, would it be possible to publish the optimal hyper-parameters somewhere?

    By-reusing those hyper-parameters, one would avoid the most computationally-demanding part of reproducing the results (by 1-2 orders of magnitude).

    opened by jotaf98 2
  • Add functionality to skip existing runs, plotting modes, some refactoring

    Add functionality to skip existing runs, plotting modes, some refactoring

    • Adding parameter skip_if_exists to runner.run
      • Default value is set such that the current behavior is maintained
      • By setting to True, runs that already have a .json output file will not be executed again
    • Possible extensions
      • Make skip_if_exists arg-parsable
    opened by f-dangel 2
  • KeyError: 'optimizer_hyperparams'

    KeyError: 'optimizer_hyperparams'

    (Apologies for creating multiple issues in a row -- it seemed more clean to keep them separate.)

    I downloaded the data from DeepOBS_Baselines, and attempted to run example_analyze_pytorch.py. Unfortunately DeepOBS seems to look for keys in the JSON files that don't exist:

    $ python example_analyze_pytorch.py
    /users/user/Research/deepobs/deepobs/analyzer/shared_utils.py:144: RuntimeWarning: Metric valid_accu
    racies does not exist for testproblem quadratic_deep. We now use fallback metric valid_losses
      default_metric), RuntimeWarning)
    /users/user/Research/deepobs/deepobs/analyzer/shared_utils.py:229: RuntimeWarning: All settings for
    /scratch/local/ssd/user/data/deepobs/quadratic_deep/SGD on test problem quadratic_deep have the same
     number of seeds runs. Mode 'most' does not make sense and we use the fallback mode 'final'
      .format(optimizer_path, testproblem_name), RuntimeWarning)
    {'Performance': 127.96759578159877, 'Speed': 'N.A.', 'Hyperparameters': {'lr': 0.01, 'momentum': 0.9
    9, 'nesterov': False}, 'Training Parameters': {}}
    /users/user/Research/deepobs/deepobs/analyzer/shared_utils.py:144: RuntimeWarning: Metric valid_accu
    racies does not exist for testproblem quadratic_deep. We now use fallback metric valid_losses
      default_metric), RuntimeWarning)
    /users/user/Research/deepobs/deepobs/analyzer/shared_utils.py:229: RuntimeWarning: All settings for
    /scratch/local/ssd/user/data/deepobs/quadratic_deep/SGD on test problem quadratic_deep have the same
     number of seeds runs. Mode 'most' does not make sense and we use the fallback mode 'final'
      .format(optimizer_path, testproblem_name), RuntimeWarning)
    /users/user/Research/deepobs/deepobs/analyzer/shared_utils.py:150: RuntimeWarning: Cannot fallback t
    o metric valid_losses for optimizer MomentumOptimizer on testproblem quadratic_deep. Will now fallba
    ck to metric test_losses
      testproblem_name), RuntimeWarning)
    /users/user/miniconda3/lib/python3.7/site-packages/numpy/core/_methods.py:193: RuntimeWarning: inva$
    id value encountered in subtract
      x = asanyarray(arr - arrmean)
    /users/user/miniconda3/lib/python3.7/site-packages/numpy/lib/function_base.py:3949: RuntimeWarning:
    invalid value encountered in multiply
      x2 = take(ap, indices_above, axis=axis) * weights_above
    Traceback (most recent call last):
      File "example_analyze_pytorch.py", line 17, in <module>
        analyzer.plot_optimizer_performance(result_path, reference_path=base + '/deepobs/baselines/quad$
    atic_deep/MomentumOptimizer')
      File "/users/user/Research/deepobs/deepobs/analyzer/analyze.py", line 514, in plot_optimizer_perfo
    rmance
        which=which)
      File "/users/user/Research/deepobs/deepobs/analyzer/analyze.py", line 462, in _plot_optimizer_perf
    ormance
        optimizer_path, mode, metric)
      File "/users/user/Research/deepobs/deepobs/analyzer/shared_utils.py", line 206, in create_setting_
    analyzer_ranking
        setting_analyzers = _get_all_setting_analyzer(optimizer_path)
      File "/users/user/Research/deepobs/deepobs/analyzer/shared_utils.py", line 184, in _get_all_settin
    g_analyzer
        setting_analyzers.append(SettingAnalyzer(sett_path))
      File "/users/user/Research/deepobs/deepobs/analyzer/shared_utils.py", line 260, in __init__
        self.aggregate = aggregate_runs(path)
      File "/users/user/Research/deepobs/deepobs/analyzer/shared_utils.py", line 101, in aggregate_runs
        aggregate['optimizer_hyperparams'] = json_data['optimizer_hyperparams']
    KeyError: 'optimizer_hyperparams'
    

    One of the JSON files in question looks like this (data points snipped for brevity):

    {
    "train_losses": [353.9337594168527, 347.5994306291853, 331.35902622767856, 307.2468915666853, ... 97.28871154785156, 91.45470428466797, 96.45774841308594, 86.27237701416016],
    "optimizer": "MomentumOptimizer",
    "testproblem": "quadratic_deep",
    "weight_decay": null,
    "batch_size": 128,
    "num_epochs": 100,
    "learning_rate": 1e-05,
    "lr_sched_epochs": null,
    "lr_sched_factors": null,
    "random_seed": 42,
    "train_log_interval": 1,
    "hyperparams": {"momentum": 0.99, "use_nesterov": false}
    }
    

    The obvious key seems to be hyperparams as opposed to optimizer_hyperparams; this occurs only for some JSON files.

    Edit: Having fixed this, there is a further key error on training_params. Perhaps these were generated with different versions of the package.

    opened by jotaf98 3
  • Installation error / unmentioned dependency

    Installation error / unmentioned dependency "bayes_opt"

    Attempting to install by following the documentation's instructions, after installing all the mentioned dependencies with conda, results in the following error:

    (base) [email protected]:~$ pip install -e git+https://github.com/abahde/[email protected]#egg=DeepOBS
    Obtaining DeepOBS from git+https://github.com/abahde/[email protected]#egg=DeepOBS
      Cloning https://github.com/abahde/DeepOBS.git (to revision master) to ./src/deepobs
      Running command git clone -q https://github.com/abahde/DeepOBS.git /users/user/src/deepobs
        ERROR: Complete output from command python setup.py egg_info:
        ERROR: Traceback (most recent call last):
          File "<string>", line 1, in <module>
          File "/users/user/src/deepobs/setup.py", line 5, in <module>
            from deepobs import __version__
          File "/users/user/src/deepobs/deepobs/__init__.py", line 5, in <module>
            from . import analyzer
          File "/users/user/src/deepobs/deepobs/analyzer/__init__.py", line 2, in <module>
            from . import analyze
          File "/users/user/src/deepobs/deepobs/analyzer/analyze.py", line 12, in <module>
            from ..tuner.tuner_utils import generate_tuning_summary
          File "/users/user/src/deepobs/deepobs/tuner/__init__.py", line 4, in <module>
            from .bayesian import GP
          File "/users/user/src/deepobs/deepobs/tuner/bayesian.py", line 3, in <module>
            from bayes_opt import UtilityFunction
        ModuleNotFoundError: No module named 'bayes_opt'
        ----------------------------------------
    ERROR: Command "python setup.py egg_info" failed with error code 1 in /users/user/src/deepobs/
    

    Is this bayes_opt package really necessary? It seems a bit tangential to the package's purpose (or at most optional).

    Edit: It turns out that bayesian-optimization has relatively few requirements so this is not a big issue; perhaps just the docs need updating.

    As an aside, it might be possible to suggest a single conda command that installs everything: conda install -c conda-forge seaborn matplotlib2tikz bayesian-optimization.

    opened by jotaf98 0
  • Wall-clock time plots

    Wall-clock time plots

    Optimizers can have very different runtimes per iteration, especially 2nd-order ones.

    This means that sometimes, despite promises of "faster" convergence, the wall-clock time taken to converge is disappointingly larger.

    Is there any chance DeepOBS could implement wall-clock time plots, in addition to per-epoch ones? (E.g. X axis in minutes or hours.)

    opened by jotaf98 4
  • Improve estimate_runtime()

    Improve estimate_runtime()

    There are a couple of improvements that I suggest:

    • [ ] Return the results not as a string, but as a dict or an object.
    • [ ] (Maybe, think about that) Include the ability to test multiple optimizers simultaneously.
    • [ ] Report standard deviation and individual runtimes for SGD.
    • [ ] Add a function that generates a figure, similar to https://github.com/ludwigbald/probprec/blob/master/code/exp_perf_prec/analyze.py
    opened by ludwigbald 0
  • Implement validation set split also for TensorFlow

    Implement validation set split also for TensorFlow

    In PyTorch we split the validation set from the training set randomly. It has the size of the test set. The validation performance is used by the tuner and analyzer to obtain the best instance. This split should be implemented in the TensorFlow data sets as well. We have already prepared the test problem and the runner implementations for this change. The only change that needs to be done to the runner is marked in the code with a ToDo flag.

    bug enhancement 
    opened by abahde 0
Releases(v1.2.0-beta)
  • v1.2.0-beta(Sep 17, 2019)

    Draft of release notes:

    • A PyTorch implementation (though not for all test problems yet)
    • A refactored Analyzer module (more flexibility and interpretability)
    • A Tuning module that automates the tuning process
    • Some minor improvements of the TensorFlow code (important bugfix: fmnist_mlp now really uses F-MNIST and not MNIST)
    • For the PyTorch code a validation set metric for each test problem. However, so far, the TensorFlow code comes without validation sets.
    • Runners now break from training if the loss becomes NaN.
    • Runners now return the output dictionary.
    • Additional training parameters can be passed as kwargs to the run() method.
    • Numpy is now also seeded.
    • Small and large benchmark sets are now global variables in DeepOBS.
    • Default test problem settings are now a global variable in DeepOBS.
    • JSON output is now dumped in human readable format.
    • Accuracy is now only printed if available.
    • Simplified Runner API.
    • Learning Rate Schedule Runner is now an extra class.
    Source code(tar.gz)
    Source code(zip)
Owner
Aaron Bahde
Graduate student at the University of Tübingen, Methods of Machine Learning
Aaron Bahde
Banglore House Prediction Using Flask Server (Python)

Banglore House Prediction Using Flask Server (Python) 🌐 Links 🌐 📂 Repo In this repository, I've implemented a Machine Learning-based Bangalore Hous

Dhyan Shah 1 Jan 24, 2022
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 842 Jan 04, 2023
A Python type explainer!

typesplainer A Python typehint explainer! Available as a cli, as a website, as a vscode extension, as a vim extension Usage First, install the package

Typesplainer 79 Dec 01, 2022
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

Jingyun Liang 139 Dec 29, 2022
PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017

pytorch-deep-generative-replay PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017 Results Continual Learning on Permu

Junsoo Ha 127 Dec 14, 2022
Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices

Face-Mesh Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices. It employs machine learning

Farnam Javadi 9 Dec 21, 2022
Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models

LMPBT Supplementary code for the Paper entitled ``Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models"

1 Sep 29, 2022
OBG-FCN - implementation of 'Object Boundary Guided Semantic Segmentation'

OBG-FCN This repository is to reproduce the implementation of 'Object Boundary Guided Semantic Segmentation' in http://arxiv.org/abs/1603.09742 Object

Jiu XU 3 Mar 11, 2019
6D Grasping Policy for Point Clouds

GA-DDPG [website, paper] Installation git clone https://github.com/liruiw/GA-DDPG.git --recursive Setup: Ubuntu 16.04 or above, CUDA 10.0 or above, py

Lirui Wang 48 Dec 21, 2022
Robust fine-tuning of zero-shot models

Robust fine-tuning of zero-shot models This repository contains code for the paper Robust fine-tuning of zero-shot models by Mitchell Wortsman*, Gabri

224 Dec 29, 2022
A scikit-learn-compatible module for estimating prediction intervals.

MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourit

588 Jan 04, 2023
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

Bo Zheng 42 Dec 09, 2022
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects

House-GAN++ Code and instructions for our paper: House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent

122 Dec 28, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110.06922). Our implementations are built on top of MMdetection3D.

Wang, Yue 539 Jan 07, 2023
Faster Convex Lipschitz Regression

Faster Convex Lipschitz Regression This reepository provides a python implementation of our Faster Convex Lipschitz Regression algorithm with GPU and

Ali Siahkamari 0 Nov 19, 2021
Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022
Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library

BaratiLab 11 Dec 27, 2022