Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

Related tags

Deep LearningSinIR
Overview

SinIR (Official Implementation)

Requirements

To install requirements:

pip install -r requirements.txt

We used Python 3.7.4 and f-strings which are introduced in python 3.6+

Training

To train a model, write a proper yaml config file in 'config_train' folder (sample yaml files provided in the config_train folder), and run this command:

python train.py <gpu_num> -y <yaml_file_in_'config_train'_folder>

For example, if you want to train a model with config_train/photo.yaml on gpu 0, run:

python train.py 0 -y photo

This will output a trained model, training logs, training output images and so on, to a subdirectory of 'outs' folder with proper naming and numbering which are used for inference.

Note that even though we provide one yaml file for each task, they can be used interchangeably, except few tasks.

You can copy and modify them depending on your purpose. Detailed explanation about configuration is written in the sample yaml files. Please read through it carefully if you need.

Inference

To carry out inference (i.e., image manipulation), you can specify inference yaml files in training yaml files. Please see provided sample training yaml files.

Or alternatively you can run this command:

python infer.py <output_dirnum> <gpu_num> -y <yaml_file_in_config_folder>

For example, if you want to carry out inference with a trained model numbered 002, with config_infer/photo_infer.yaml on gpu 0, run:

python infer.py 2 0 -y photo_infer

Then it will automatically find an output folder numbered 002 and conduct image manipulation, saving related results in the subdirectory.

Note that duplicated numbering (which can be avoided with a normal usage) will incur error. In this case, please keep only one output folder.

We also provide sample yaml files for inference which are paired with yaml files for training. Feel free to copy and modify depending on your purpose.

Acknowledgement

This repository includes images from:

  1. https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/ (BSD dataset)
  2. https://github.com/luanfujun/deep-painterly-harmonization/ (https://arxiv.org/abs/1804.03189)
  3. https://github.com/luanfujun/deep-photo-styletransfer (https://arxiv.org/abs/1703.07511)
  4. The Web (free images)

This repository includes codes snippets from:

  1. SSIM: https://github.com/VainF/pytorch-msssim
  2. Anti-aliasing + Bicubic resampling: https://github.com/thstkdgus35/bicubic_pytorch
  3. dilated mask: https://github.com/tamarott/SinGAN
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternativ

9 Oct 18, 2022
Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

47 Jan 01, 2023
Matthew Colbrook 1 Apr 08, 2022
FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

FaceQgen FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment This repository is based on the paper: "FaceQgen: Semi-Supervised D

Javier Hernandez-Ortega 3 Aug 04, 2022
A framework that allows people to write their own Rocket League bots.

YOU PROBABLY SHOULDN'T PULL THIS REPO Bot Makers Read This! If you just want to make a bot, you don't need to be here. Instead, start with one of thes

543 Dec 20, 2022
Source code for our paper "Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures"

Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (M

shzhang 59 Dec 10, 2022
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
level1-image-classification-level1-recsys-09 created by GitHub Classroom

level1-image-classification-level1-recsys-09 ❗ 주제 설명 COVID-19 Pandemic 상황 속 마스크 착용 유무 판단 시스템 구축 마스크 착용 여부, 성별, 나이 총 세가지 기준에 따라 총 18개의 class로 구분하는 모델 ?

6 Mar 17, 2022
DSAC* for Visual Camera Re-Localization (RGB or RGB-D)

DSAC* for Visual Camera Re-Localization (RGB or RGB-D) Introduction Installation Data Structure Supported Datasets 7Scenes 12Scenes Cambridge Landmark

Visual Learning Lab 143 Dec 22, 2022
PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

Impersonator PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer an

SVIP Lab 1.7k Jan 06, 2023
Codebase of deep learning models for inferring stability of mRNA molecules

Kaggle OpenVaccine Models Codebase of deep learning models for inferring stability of mRNA molecules, corresponding to the Kaggle Open Vaccine Challen

Eternagame 40 Dec 29, 2022
[ICCV 2021] Official PyTorch implementation for Deep Relational Metric Learning.

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

Borui Zhang 39 Dec 10, 2022
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

72 Jan 03, 2023
Additional environments compatible with OpenAI gym

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning A codebase for training reinforcement learning policies for quad

Zhehui Huang 40 Dec 06, 2022
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

10 Oct 07, 2022
Semantic graph parser based on Categorial grammars

Lambekseq "Everyone who failed Greek or Latin hates it." This package is for proving theorems in Categorial grammars (CG) and constructing semantic gr

10 Aug 19, 2022
Using machine learning to predict undergrad college admissions.

College-Prediction Project- Overview: Many have tried, many have failed. Few trailblazers are ambitious enought to chase acceptance into the top 15 un

John H Klinges 1 Jan 05, 2022
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

Princeton Vision & Learning Lab 115 Jan 04, 2023
Open source code for Paper "A Co-Interactive Transformer for Joint Slot Filling and Intent Detection"

A Co-Interactive Transformer for Joint Slot Filling and Intent Detection This repository contains the PyTorch implementation of the paper: A Co-Intera

67 Dec 05, 2022