An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI, torch2trt to accelerate. our model support for int8, dynamic input and profiling. (Nvidia-Alibaba-TensoRT-hackathon2021)

Overview

Ultra_Fast_Lane_Detection_TensorRT

An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI to accelerate. our model support for int8, dynamic input and profiling. (Nvidia-Alibaba-TensoRT-hackathon2021)
这是一个基于TensorRT加速UFLD的repo,包含PyThon ONNX Parser以及C++ TensorRT API版本, 还包括Torch2TRT版本, 对源码和论文感兴趣的请参见:https://github.com/cfzd/Ultra-Fast-Lane-Detection

一. PyThon ONNX Parser

1. How to run

1) pip install -r requirements.txt

2) TensorRT7.x wil be fine, and other version may got some errors

2) For PyTorch, you can also try another version like 1.6, 1.5 or 1.4

2. Build ONNX(将训练好的pth/pt模型转换为onnx)

1) static(生成静态onnx模型):
python3 torch2onnx.py onnx_dynamic_int8/configs/tusimple_4.py --test_model ./tusimple_18.pth 

2) dynamic(生成支持动态输入的onnx模型):
First: vim torch2onnx.py
second: change "fix" from "True" to "False"
python3 torch2onnx.py onnx_dynamic_int8/configs/tusimple_4.py --test_model ./tusimple_18.pth

3. Build trt engine(将onnx模型转换为TensorRT的推理引擎)

We support many different types of engine export, such as static fp32, fp16, dynamic fp32, fp16, and int8 quantization
我们支持多种不同类型engine的导出,例如:静态fp32、fp16,动态fp32、fp16,以及int8的量化

static(fp32, fp16): 对于静态模型的导出,终端输入:

fp32:
python3 build_engine.py --onnx_path model_static.onnx --mode fp32<br/>
fp16:
python3 build_engine.py --onnx_path model_static.onnx --mode fp16<br/>

dynamic(fp32, fp16): 对于动态模型的导出,终端输入:

fp32:
python3 build_engine.py --onnx_path model_dynamic.onnx --mode fp32 --dynamic
fp16:
python3 build_engine.py --onnx_path model_dynamic.onnx --mode fp16 --dynamic

int8 quantization 如果想使用int8量化,终端输入:

python3 build_engine.py --onnx_path model_static.onnx --mode int8 --int8_data_path data/testset1000
# (int8_data_Path represents the calibration dataset)
# (其中int8_data_path表示校正数据集)

4. evaluate(compare)

(If you want to compare the acceleration and accuracy of reasoning through TRT with using pytorch, you can run the script)
(如果您想要比较通过TRT推理后,相对于使用PyTorch的加速以及精确度情况,可以运行该脚本)

python3 evaluate.py --pth_path PATH_OF_PTH_MODEL --trt_path PATH_OF_TRT_MODEL

二. torch2trt

torch2trt is an easy tool to convert pytorch model to tensorrt, you can check model details here:
https://github.com/NVIDIA-AI-IOT/torch2trt
(torch2trt 是一个易于使用的PyTorch到TensorRT转换器)

How to run

1) git clone https://github.com/NVIDIA-AI-IOT/torch2trt

2) python setup.py install

2) PyTorch >= 1.6 (other versions may got some errors)

生成trt模型

python3 export_trt.py

torch2trt 预测demo (可视化)

python3 demo_torch2trt.py --trt_path PATH_OF_TRT_MODEL --data_path PATH_OF_YOUR_IMG

evaluated

python3 evaluate.py --pth_path PATH_OF_PTH_MODEL --trt_path PATH_OF_TRT_MODEL --data_path PATH_OF_YOUR_IMG --torch2trt

三. C++ TensorRT API

生成权重文件

python3 export_trtcy.py

trt模型生成

修改第十行为 #define USE_FP32,则为FP32模式, 修改第十行为 #define USE_FP16,则为FP16模式

mkdir build
cd build
cmake ..
make
./lane_det -transfer             //  'lane_det.engine'

Tensorrt预测

./lane_det -infer  ../imgs 

四. trtexec

test tensorrt_dynamic_model on terminal, for instance, for batch_size=BATCH_SIZE, just run:

trtexec  --explicitBatch --minShapes=1x3x288x800 --optShapes=1x3x288x800 --maxShapes=32x3x288x800 --shapes=BATCH_SIZEx3x288x800 --loadEngine=lane_fp32_dynamic.trt --noDataTransfers --dumpProfile --separateProfileRun
You might also like...
Gpt2-WebAPI - The objective of this API is to provide the 3 best possible responses to sentences that the user would input via http GET request as a parameter
One Stop Anomaly Shop: Anomaly detection using two-phase approach: (a) pre-labeling using statistics, Natural Language Processing and static rules; (b) anomaly scoring using supervised and unsupervised machine learning.

One Stop Anomaly Shop (OSAS) Quick start guide Step 1: Get/build the docker image Option 1: Use precompiled image (might not reflect latest changes):

:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

AIDynamicTextReader - A simple dynamic text reader based on Artificial intelligence

AI Dynamic Text Reader: This is a simple dynamic text reader based on Artificial

A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Simple and efficient RevNet-Library with DeepSpeed support
Simple and efficient RevNet-Library with DeepSpeed support

RevLib Simple and efficient RevNet-Library with DeepSpeed support Features Half the constant memory usage and faster than RevNet libraries Less memory

A high-level yet extensible library for fast language model tuning via automatic prompt search

ruPrompts ruPrompts is a high-level yet extensible library for fast language model tuning via automatic prompt search, featuring integration with Hugg

Comments
  • bug in UFLD_C++/main.cpp

    bug in UFLD_C++/main.cpp

    in function softmax_mul() : exp() don't substruct channel's (100) largest value; int funcion argmax(): "int max" should change to "float max".

    opened by tangjianping54 0
  • 请问怎么用CULane数据集训练的权重来推理

    请问怎么用CULane数据集训练的权重来推理

    我使用UFLD_C++来进行推理,修改了export_trtcy.py中的model = parsingNet(pretrained=False, backbone='18', cls_dim=(101, 56, 4), use_aux=False).cuda(),改为model = parsingNet(pretrained=False, backbone='18', cls_dim=(201, 18, 4), use_aux=False).cuda(),并且把OUTPUT_C改成201,把OUTPUT_H改成18,把OUTPUT_W改为4. 然后运行./lane_det -transfer的时候抛出了下面的错误: ./lane_det -transfer Loading weights: ../lane_culane.trtcy Platform supports fp16 mode and use it !!! Building engine, please wait for a while... [08/29/2022-11:29:31] [E] [TRT] (Unnamed Layer* 73) [Constant]: constant weights has count 29638656 but 46333952 was expected [08/29/2022-11:29:31] [E] [TRT] Could not compute dimensions for (Unnamed Layer* 73) [Constant]_output, because the network is not valid. [08/29/2022-11:29:31] [E] [TRT] Network validation failed. Build engine successfully! lane_det: /home/juche/Desktop/lmf_workspace/Ultra_Fast_Lane_Detection_TensorRT/UFLD_C++/UFLD/UFLD_net.cpp:138: void UFLD_net::APIToModel(nvinfer1::IHostMemory**): Assertion `engine != nullptr' failed. Aborted (core dumped)

    请问我该怎么办?

    opened by limengfei3675 1
  • Unpickling issue with torch2trt

    Unpickling issue with torch2trt

    I converted the tusimple_18.pth weight from the original UFLD repo using torch2onnx.py and build_engine.py scripts to a trt file. Running evaluate.py shows Inference time with PyTorch = 141.777 ms and Inference time with TensorRT_static = 27.395 ms in fp16. However, running UFLD_torch2trt/demo_torch2trt.py returns this error: Traceback (most recent call last): File "UFLD_torch2trt/demo_torch2trt.py", line 96, in <module> demo_with_torch2trt(trt_path, data_path) File "UFLD_torch2trt/demo_torch2trt.py", line 31, in demo_with_torch2trt model_trt.load_state_dict(torch.load(trt_file_path)) File "/home/nam/.local/lib/python3.6/site-packages/torch/serialization.py", line 593, in load return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args) File "/home/nam/.local/lib/python3.6/site-packages/torch/serialization.py", line 762, in _legacy_load magic_number = pickle_module.load(f, **pickle_load_args) _pickle.UnpicklingError: unpickling stack underflow It appears the issue mostly comes from loading old torchvision models, I tried to delete torch caches but it didnt work. I tried for both static and dynamic model but the result is the same. :(

    opened by namKolorfuL 0
  • Issue with demo_trt.py

    Issue with demo_trt.py

    Hi, I downloaded tusimple_18.pth weight from the original UFLD repo and converted it to trt using your scipts in UFLD_Tiny. However, when doing inference with demo_trt.py, i got this error:

    [email protected]:~/Desktop/Ultra_Fast_Lane_Detection_TensorRT$ python3 UFLD_Tiny/demo_trt.py --model ./model_static_fp16 Loading TRT file from path ./model_static_fp16.trt... [array([-0.2890625 , -1. , -1.4892578 , ..., 2.9804688 , 0.18823242, 9.140625 ], dtype=float32)] Traceback (most recent call last): File "UFLD_Tiny/demo_trt.py", line 123, in <module> main() File "UFLD_Tiny/demo_trt.py", line 93, in main out_j = trt_outputs[0].reshape(97, 56, 4) # tiny版本不一样 ValueError: cannot reshape array of size 22624 into shape (97,56,4) The output looks like a 1-D array. Any idea how to solve this? My system: Jetson TX2, Jetpack 4.5.1, Ubuntu 18.04, CUDA 10.2, Tensorrt 7.1.3

    opened by namKolorfuL 0
Releases(TRT2021)
Owner
steven.yan
Algorithm engineer
steven.yan
State-of-the-art NLP through transformer models in a modular design and consistent APIs.

Trapper (Transformers wRAPPER) Trapper is an NLP library that aims to make it easier to train transformer based models on downstream tasks. It wraps h

Open Business Software Solutions 42 Sep 21, 2022
nlp基础任务

NLP算法 说明 此算法仓库包括文本分类、序列标注、关系抽取、文本匹配、文本相似度匹配这五个主流NLP任务,涉及到22个相关的模型算法。 框架结构 文件结构 all_models ├── Base_line │   ├── __init__.py │   ├── base_data_process.

zuxinqi 23 Sep 22, 2022
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines

spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines spaCy-wrap is minimal library intended for wrapping fine-tuned transformers from t

Kenneth Enevoldsen 32 Dec 29, 2022
Hierarchical unsupervised and semi-supervised topic models for sparse count data with CorEx

Anchored CorEx: Hierarchical Topic Modeling with Minimal Domain Knowledge Correlation Explanation (CorEx) is a topic model that yields rich topics tha

Greg Ver Steeg 592 Dec 18, 2022
Code for PED: DETR For (Crowd) Pedestrian Detection

Code for PED: DETR For (Crowd) Pedestrian Detection

36 Sep 13, 2022
A flask application to predict the speech emotion of any .wav file.

This is a speech emotion recognition app. It will allow you to train a modular MLP model with the RAVDESS dataset, and then use that model with a flask application to predict the speech emotion of an

Aryan Vijaywargia 2 Dec 15, 2021
A demo for end-to-end English and Chinese text spotting using ABCNet.

ABCNet_Chinese A demo for end-to-end English and Chinese text spotting using ABCNet. This is an old model that was trained a long ago, which serves as

Yuliang Liu 45 Oct 04, 2022
An open source framework for seq2seq models in PyTorch.

pytorch-seq2seq Documentation This is a framework for sequence-to-sequence (seq2seq) models implemented in PyTorch. The framework has modularized and

International Business Machines 1.4k Jan 02, 2023
Write Python in Urdu - اردو میں کوڈ لکھیں

UrduPython Write simple Python in Urdu. How to Use Write Urdu code in سامپل۔پے The mappings are as following: "۔": ".", "،":

Saad A. Bazaz 26 Nov 27, 2022
A number of methods in order to perform Natural Language Processing on live data derived from Twitter

A number of methods in order to perform Natural Language Processing on live data derived from Twitter

1 Nov 24, 2021
Japanese Long-Unit-Word Tokenizer with RemBertTokenizerFast of Transformers

Japanese-LUW-Tokenizer Japanese Long-Unit-Word (国語研長単位) Tokenizer for Transformers based on 青空文庫 Basic Usage from transformers import RemBertToken

Koichi Yasuoka 3 Dec 22, 2021
SAINT PyTorch implementation

SAINT-pytorch A Simple pyTorch implementation of "Towards an Appropriate Query, Key, and Value Computation for Knowledge Tracing" based on https://arx

Arshad Shaikh 63 Dec 25, 2022
Kinky furry assitant based on GPT2

KinkyFurs-V0 Kinky furry assistant based on GPT2 How to run python3 V0.py then, open web browser and go to localhost:8080 Requirements: Flask trans

Sparki 1 Jun 11, 2022
nlpcommon is a python Open Source Toolkit for text classification.

nlpcommon nlpcommon, Python Text Tool. Guide Feature Install Usage Dataset Contact Cite Reference Feature nlpcommon is a python Open Source

xuming 3 May 29, 2022
Translates basic English sentences into the Huna language (hoo-NAH)

huna-translator The Huna Language Translates basic English sentences into the Huna language (hoo-NAH). The Huna constructed language was developed in

Miles Smith 0 Jan 20, 2022
Data preprocessing rosetta parser for python

datapreprocessing_rosetta_parser I've never done any NLP or text data processing before, so I wanted to use this hackathon as a learning opportunity,

ASReview hackathon for Follow the Money 2 Nov 28, 2021
MEDIALpy: MEDIcal Abbreviations Lookup in Python

A small python package that allows the user to look up common medical abbreviations.

Aberystwyth Systems Biology 7 Nov 09, 2022
[AAAI 21] Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning

◥ Curriculum Labeling ◣ Revisiting Pseudo-Labeling for Semi-Supervised Learning Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, Vicente Ordonez. In the

UVA Computer Vision 113 Dec 15, 2022
Predict the spans of toxic posts that were responsible for the toxic label of the posts

toxic-spans-detection An attempt at the SemEval 2021 Task 5: Toxic Spans Detection. The Toxic Spans Detection task of SemEval2021 required participant

Ilias Antonopoulos 3 Jul 24, 2022
NLP project that works with news (NER, context generation, news trend analytics)

СоАвтор СоАвтор – платформа и открытый набор инструментов для редакций и журналистов-фрилансеров, который призван сделать процесс создания контента ма

38 Jan 04, 2023