[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

Overview

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models

License: MIT

Codes for this paper The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models. [CVPR 2021]

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang.

Overview

Can we aggressively trim down the complexity of pre-trained models, without damaging their downstream transferability?

Transfer Learning for Winning Tickets from Supervised and Self-supervised Pre-training

Downstream classification tasks.

Downstream detection and segmentation tasks.

Properties of Pre-training Tickets

Reproduce

Preliminary

Required environment:

  • pytorch >= 1.5.0
  • torchvision

Pre-trained Models

Pre-trained models are provided here.

imagenet_weight.pt # torchvision std model

moco.pt # pretrained moco v2 model (only contain encorder_q)

moco_v2_800ep_pretrain.pth.tar # pretrained moco v2 model (contain encorder_q&k)

simclr_weight.pt # (pretrained_simclr weight)

Task-Specific Tickets Finding

Remark. for both pre-training tasks and downstream tasks.

Iterative Magnitude Pruning

SimCLR task
cd SimCLR 
python -u main.py \
    [experiment name] \ 
    --gpu 0,1,2,3 \    
    --epochs 180 \
    --prun_epoch 10 \ # pruning for ( 1 + 180/10 iterations)
    --prun_percent 0.2 \
    --lr 1e-4 \
    --arch resnet50 \
    --batch_size 256 \
    --data [data direction] \
    --sim_model [pretrained_simclr_model] \
    --save_dir simclr_imp
MoCo task
cd MoCo
CUDA_VISIBLE_DEVICES=0,1,2,3 python -u main_moco_imp.py \
	[Dataset Direction] \
	--pretrained_path [pretrained_moco_model] \
    -a resnet50 \
    --batch-size 256 \
    --dist-url 'tcp://127.0.0.1:5234' \
    --multiprocessing-distributed \
    --world-size 1 \
    --rank 0 \
    --mlp \
    --moco-t 0.2 \
    --aug-plus \
    --cos \
    --epochs 180 \
    --retrain_epoch 10 \ # pruning for ( 1 + 180/10 iterations)
    --save_dir moco_imp
Classification task on ImageNet
CUDA_VISIBLE_DEVICES=0,1,2,3 python -u main_imp_imagenet.py \
	[Dataset Direction] \
	-a resnet50 \
	--epochs 10 \
	-b 256 \
	--lr 1e-4 \
	--states 19 \ # iterative pruning times 
	--save_dir imagenet_imp
Classification task on Visda2017
CUDA_VISIBLE_DEVICES=0,1,2,3 python -u main_imp_visda.py \
	[Dataset Direction] \
	-a resnet50 \
	--epochs 20 \
	-b 256 \
	--lr 0.001 \
	--prune_type lt \ # lt or pt_trans
	--pre_weight [pretrained weight] \ # if pt_trans else None
	--states 19 \ # iterative pruning times
	--save_dir visda_imp
Classification task on small dataset
CUDA_VISIBLE_DEVICES=0 python -u main_imp_downstream.py \
	--data [dataset direction] \
	--dataset [dataset name] \#cifar10, cifar100, svhn, fmnist 
	--arch resnet50 \
	--pruning_times 19 \
	--prune_type [lt, pt, rewind_lt, pt_trans] \
	--save_dir imp_downstream \
	# --pretrained [pretrained weight if prune_type==pt_trans] \
	# --random_prune [if using random pruning] \
    # --rewind_epoch [rewind weight epoch if prune_type==rewind_lt] \

Transfer to Downstream Tasks

Small datasets: (e.g., CIFAR-10, CIFAR-100, SVHN, Fashion-MNIST)
CUDA_VISIBLE_DEVICES=0 python -u main_eval_downstream.py \
	--data [dataset direction] \
	--dataset [dataset name] \#cifar10, cifar100, svhn, fmnist 
	--arch resnet50 \
	--save_dir [save_direction] \
	--pretrained [init weight] \
	--dict_key state_dict [ dict_key in pretrained file, None means load all ] \
	--mask_dir [mask for ticket] \
	--reverse_mask \ #if want to reverse mask
Visda2017:
CUDA_VISIBLE_DEVICES=0,1,2,3 python -u main_eval_visda.py \
	[data direction] \
	-a resnet50 \
	--epochs 20 \
	-b 256 \
	--lr 0.001 \
	--save_dir [save_direction] \
	--pretrained [init weight] \
	--dict_key state_dict [ dict_key in pretrained file, None means load all ] \
	--mask_dir [mask for ticket] \
	--reverse_mask \ #if want to reverse mask

Detection and Segmentation Experiments

Detials of YOLOv4 for detection are collected here.

Detials of DeepLabv3+ for segmentation are collected here.

Citation

@article{chen2020lottery,
  title={The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models},
  author={Chen, Tianlong and Frankle, Jonathan and Chang, Shiyu and Liu, Sijia and Zhang, Yang and Carbin, Michael and Wang, Zhangyang},
  journal={arXiv preprint arXiv:2012.06908},
  year={2020}
}

Acknowledgement

https://github.com/google-research/simclr

https://github.com/facebookresearch/moco

https://github.com/VainF/DeepLabV3Plus-Pytorch

https://github.com/argusswift/YOLOv4-pytorch

https://github.com/yczhang1017/SSD_resnet_pytorch/tree/master

Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
A python library to artfully visualize Factorio Blueprints and an interactive web demo for using it.

Factorio Blueprint Visualizer I love the game Factorio and I really like the look of factories after growing for many hours or blueprints after tweaki

Piet Brömmel 124 Jan 07, 2023
Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)

Table of Content Introduction Getting Started Datasets Installation Experiments Training & Testing Pretrained models Texture fine-tuning Demo Toward R

VinAI Research 42 Dec 05, 2022
A tool for calculating distortion parameters in coordination complexes.

OctaDist Octahedral distortion calculator: A tool for calculating distortion parameters in coordination complexes. https://octadist.github.io/ Registe

OctaDist 12 Oct 04, 2022
Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

Peng Qiao 1 Dec 14, 2021
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
Collection of common code that's shared among different research projects in FAIR computer vision team.

fvcore fvcore is a light-weight core library that provides the most common and essential functionality shared in various computer vision frameworks de

Meta Research 1.5k Jan 07, 2023
Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in

47 Oct 11, 2022
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergen

281 Dec 30, 2022
A GOOD REPRESENTATION DETECTS NOISY LABELS

A GOOD REPRESENTATION DETECTS NOISY LABELS This code is a PyTorch implementation of the paper: Prerequisites Python 3.6.9 PyTorch 1.7.1 Torchvision 0.

<a href=[email protected]"> 64 Jan 04, 2023
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation This project hosts the code for implementing the DCT-MASK algorithms

Alibaba Cloud 57 Nov 27, 2022
[NeurIPS'20] Multiscale Deep Equilibrium Models

Multiscale Deep Equilibrium Models 💥 💥 💥 💥 This repo is deprecated and we will soon stop actively maintaining it, as a more up-to-date (and simple

CMU Locus Lab 221 Dec 26, 2022
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands Oral Presentation, 3DV 2021 Korrawe Karunratanakul, Adrian Spurr, Zicong

Korrawe Karunratanakul 43 Oct 07, 2022
[AAAI 2021] MVFNet: Multi-View Fusion Network for Efficient Video Recognition

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

Wenhao Wu 114 Nov 27, 2022
On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021))

PTvsBT On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021) Citation Please cite a

Sunbow Liu 10 Nov 25, 2022
An unopinionated replacement for PyTorch's Dataset and ImageFolder, that handles Tar archives

Simple Tar Dataset An unopinionated replacement for PyTorch's Dataset and ImageFolder classes, for datasets stored as uncompressed Tar archives. Just

Joao Henriques 47 Dec 20, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
Source Code for Simulations in the Publication "Can the brain use waves to solve planning problems?"

Code for Simulations in the Publication Can the brain use waves to solve planning problems? Installing Required Python Packages Please use Python vers

EMD Group 2 Jul 01, 2022
Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

Zongsheng Yue 53 Nov 23, 2022
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022