Espial is an engine for automated organization and discovery of personal knowledge

Overview

logo

Live Demo (currently not running, on it)

Espial is an engine for automated organization and discovery in knowledge bases. It can be adapted to run with any knowledge base software, but currently works best with file-based knowledge bases.

Espial uses Natural Language Processing and AI to improve the way you find new links in your knowledge, enhancing the organization of your thoughts to help you discover new ones.

From the explanatory blog post:

Espial can cultivate a form of intended serendipity by suggesting a link between your thoughts instead of simply reminding you of a pathway you had already created. It aims to make discovery and the act of connection —fundamental to the way we think— more efficient.

It can help you surface domains, ideas, and directions to brainstorm and explore, related to your current note-taking activity

See Architecture for a more technical overview of Espial's algorithm.

demo gif

Espial's current features:

  • automated graph: Espial generates a graph of auto-detected concepts and maps how they link to your different documents. This maps both the meaning of your documents into a visual space and allows you to see how those documents relate to each other with a high-level view.
  • document similarity: you can query for a given document in your knowledge base and get most related and relevant notes that you could link / relate to it, and through which concepts. This similarity is on a semantic level (on meaning), not on the words used.
  • external search: Espial has a semantic search engine and I’ve built a web extension that uses it to find items related to the page you’re currently on. You can run submit search queries and webpages to compare them to your knowledge base.
  • transformation of exploration into concrete structure: when you view the tags and concepts that the program has surfaced, you can pick those you want to become part of your knowledge base’s structure. They can then become tags or even concept notes (a note that describes a concept and links to related notes).
  • extensive customizability: Espial can be easily plugged into many different knowledge base software, although it was first built for Archivy. Writing plugins and extensions for other tools is simple.

Future Goals / In Progress Features:

Espial is a nascent project and will be getting many improvements, including:

  • commands to compare and integrate two entire knowledge bases
  • an option to download all the articles referenced in the knowledge base as documents
  • enhance the algorithm so that it learns and detects existing hierarchies in your knowledge
  • coordinate launch of Espial plugins for major knowledge base software
  • improve load time for large KBs

If there are things you want added to Espial, create an issue!

Installation

  • have pip and Python installed
  • Run pip install espial
  • Run python -m spacy download en_core_web_md

Usage

Usage: espial run [OPTIONS] DATA_DIR

Options:
  --rerun         Regenerate existing concept graph
  --port INTEGER  Port to run server on.
  --host TEXT     Host to run server on.
  --help          Show this message and exit.
  • run espial run and then open http://localhost:5002 to access the interface. Warning: if you're running Espial on a low-ram device, lower batch_size in the config (see below).

Configuration

Espial's configuration language is Python. See espial/config.py to see what you can configure. Run espial config to set up your configuration.

If you like the software, consider sponsoring me. I'm a student and the support is really useful. If you use it in your own projects, please credit the original library.

If you have ideas for the project and how to make it better, please open an issue or contact me.

Comments
  • Numpy issue on MacOS 11.2

    Numpy issue on MacOS 11.2

    Running the second python command results in the following error. I was not able to resolve it by myself by downgrading numpy to 1.20.0:

    ~/w/g/espial ❯❯❯ python -m spacy download en_core_web_md                                                                   
    
    Traceback (most recent call last):
      File "/Users/dmitry/.pyenv/versions/3.9.4/lib/python3.9/runpy.py", line 188, in _run_module_as_main
        mod_name, mod_spec, code = _get_module_details(mod_name, _Error)
      File "/Users/dmitry/.pyenv/versions/3.9.4/lib/python3.9/runpy.py", line 147, in _get_module_details
        return _get_module_details(pkg_main_name, error)
      File "/Users/dmitry/.pyenv/versions/3.9.4/lib/python3.9/runpy.py", line 111, in _get_module_details
        __import__(pkg_name)
      File "/Users/dmitry/.pyenv/versions/3.9.4/lib/python3.9/site-packages/spacy/__init__.py", line 11, in <module>
        from thinc.api import prefer_gpu, require_gpu, require_cpu  # noqa: F401
      File "/Users/dmitry/.pyenv/versions/3.9.4/lib/python3.9/site-packages/thinc/api.py", line 2, in <module>
        from .initializers import normal_init, uniform_init, glorot_uniform_init, zero_init
      File "/Users/dmitry/.pyenv/versions/3.9.4/lib/python3.9/site-packages/thinc/initializers.py", line 4, in <module>
        from .backends import Ops
      File "/Users/dmitry/.pyenv/versions/3.9.4/lib/python3.9/site-packages/thinc/backends/__init__.py", line 8, in <module>
        from .cupy_ops import CupyOps, has_cupy
      File "/Users/dmitry/.pyenv/versions/3.9.4/lib/python3.9/site-packages/thinc/backends/cupy_ops.py", line 19, in <module>
        from .numpy_ops import NumpyOps
      File "thinc/backends/numpy_ops.pyx", line 1, in init thinc.backends.numpy_ops
    ValueError: numpy.ndarray size changed, may indicate binary incompatibility. Expected 96 from C header, got 88 from PyObject
    
    ~/w/g/espial ❯❯❯ python -V      
    Python 3.9.4
    
    opened by dmitrym0 5
  • [ImgBot] Optimize images

    [ImgBot] Optimize images

    Beep boop. Your images are optimized!

    Your image file size has been reduced by 12% 🎉

    Details

    | File | Before | After | Percent reduction | |:--|:--|:--|:--| | /espial/static/logo.png | 5.46kb | 2.74kb | 49.78% | | /espial/static/Group 2.png | 1.57kb | 1.06kb | 32.15% | | /img/espial.gif | 7,685.72kb | 6,797.04kb | 11.56% | | /espial/static/logo.svg | 0.86kb | 0.85kb | 1.58% | | | | | | | Total : | 7,693.61kb | 6,801.69kb | 11.59% |


    📝 docs | :octocat: repo | 🙋🏾 issues | 🏪 marketplace

    ~Imgbot - Part of Optimole family

    opened by imgbot[bot] 0
  • Need an Effective Document Display

    Need an Effective Document Display

    We should be able to click on a node and see the document in an in-browser render. We should also highlight specific words or content that links to other things. Like a document with a ton of clickable highlighted areas. It would also help to have a synopsis of the document, its links, and the key concepts and their links.

    opened by mmangione 0
  • Filtering of Nodes by Feature or Connection

    Filtering of Nodes by Feature or Connection

    We need to be able to filter out some of the nodes. This means we should have a search box or toolbar that can search, sort, and filter by word, concept, type of connection, type of word, etc...

    I think this might be similar to a faceted ElasticSearch filter.

    opened by mmangione 0
  • Can't download en_core_web_lg with latest version of spaCy (3.3.0.dev0)

    Can't download en_core_web_lg with latest version of spaCy (3.3.0.dev0)

    With the current version of spaCy (3.3.0.dev0), downloading en_core_web_md did not work:

    $ python3 -m spacy download en_core_web_md
    
    ✘ No compatible packages found for v3.3 of spaCy
    

    It worked after downgrading to 3.2.0

    opened by didmar 0
Releases(v0.2.1)
  • v0.2.1(Mar 9, 2022)

    Espial just got an update! This is mostly maintenance and crucial bug fixing, although more exciting stuff should be coming to Espial core soon. This release comes with the launch of archivy-espial, an Espial integration for Archivy, allowing you to automatically find related notes and documents for your current note, directly inside your knowledge base.

    Highlights

    • addition of a get_potential_concepts route to determine the tags that could suit a given query
    • addition of a ALLOWED_ORIGINS config parameter to set the websites that can fetch info from Espial
    • fixed bug when a query returns no results
    • fixed implementation bug when files are moved / renamed and
    Source code(tar.gz)
    Source code(zip)
Owner
Uzay-G
Active developer building stuff with Ruby, Crystal and Python | Google Code-in 2019 Grand Prize Winner | Creator @archivy
Uzay-G
CYGNUS, the Cynical AI, combines snarky responses with uncanny aggression.

New & (hopefully) Improved CYGNUS with several API updates, user updates, and online/offline operations added!!!

Simran Farrukh 0 Mar 28, 2022
Converts text into a PDF of handwritten notes

Text To Handwritten Notes Converts text into a PDF of handwritten notes Explore the docs » · Report Bug · Request Feature · Steps: $ git clone https:/

UVSinghK 63 Oct 09, 2022
Estimation of the CEFR complexity score of a given word, sentence or text.

NLP-Swedish … allows to estimate CEFR (Common European Framework of References) complexity score of a given word, sentence or text. CEFR scores come f

3 Apr 30, 2022
Enterprise Scale NLP with Hugging Face & SageMaker Workshop series

Workshop: Enterprise-Scale NLP with Hugging Face & Amazon SageMaker Earlier this year we announced a strategic collaboration with Amazon to make it ea

Philipp Schmid 161 Dec 16, 2022
Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch

N-Grammer - Pytorch Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch Install $ pip install n-grammer-pytorch Usage

Phil Wang 66 Dec 29, 2022
This repo contains simple to use, pretrained/training-less models for speaker diarization.

PyDiar This repo contains simple to use, pretrained/training-less models for speaker diarization. Supported Models Binary Key Speaker Modeling Based o

12 Jan 20, 2022
Auto-researching tool generating word documents.

About ResearchTE automates researching by generating document with answers to given questions. Supports getting results from: Google DuckDuckGo (with

1 Feb 14, 2022
DVC-NLP-Simple-usecase

dvc-NLP-simple-usecase DVC NLP project Reference repository: official reference repo DVC STUDIO MY View Bag of Words- Krish Naik TF-IDF- Krish Naik ST

SUNNY BHAVEEN CHANDRA 2 Oct 02, 2022
Let Xiao Ai speakers control third-party devices

A stupid way to extend miot/xiaoai. Demo for Panasonic Bath Bully FV-RB20VL1 逆向 Panasonic Smart China,获得控制浴霸的请求信息(HTTP 请求),详见 apps/panasonic.py; 2. 通过

bin 14 Jul 07, 2022
Unifying Cross-Lingual Semantic Role Labeling with Heterogeneous Linguistic Resources (NAACL-2021).

Unifying Cross-Lingual Semantic Role Labeling with Heterogeneous Linguistic Resources Description This is the repository for the paper Unifying Cross-

Sapienza NLP group 16 Sep 09, 2022
SentimentArcs: a large ensemble of dozens of sentiment analysis models to analyze emotion in text over time

SentimentArcs - Emotion in Text An end-to-end pipeline based on Jupyter notebooks to detect, extract, process and anlayze emotion over time in text. E

jon_chun 14 Dec 19, 2022
Pipeline for chemical image-to-text competition

BMS-Molecular-Translation Introduction This is a pipeline for Bristol-Myers Squibb – Molecular Translation by Vadim Timakin and Maksim Zhdanov. We got

Maksim Zhdanov 7 Sep 20, 2022
ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.

ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.

Antlr Project 13.6k Jan 05, 2023
Shared code for training sentence embeddings with Flax / JAX

flax-sentence-embeddings This repository will be used to share code for the Flax / JAX community event to train sentence embeddings on 1B+ training pa

Nils Reimers 23 Dec 30, 2022
Maha is a text processing library specially developed to deal with Arabic text.

An Arabic text processing library intended for use in NLP applications Maha is a text processing library specially developed to deal with Arabic text.

Mohammad Al-Fetyani 184 Nov 27, 2022
List of GSoC organisations with number of times they have been selected.

Welcome to GSoC Organisation Frequency And Details 👋 List of GSoC organisations with number of times they have been selected, techonologies, topics,

Shivam Kumar Jha 41 Oct 01, 2022
用Resnet101+GPT搭建一个玩王者荣耀的AI

基于pytorch框架用resnet101加GPT搭建AI玩王者荣耀 本源码模型主要用了SamLynnEvans Transformer 的源码的解码部分。以及pytorch自带的预训练模型"resnet101-5d3b4d8f.pth"

冯泉荔 2.2k Jan 03, 2023
Training and evaluation codes for the BertGen paper (ACL-IJCNLP 2021)

BERTGEN This repository is the implementation of the paper "BERTGEN: Multi-task Generation through BERT" (https://arxiv.org/abs/2106.03484). The codeb

<a href=[email protected]"> 9 Oct 26, 2022
The training code for the 4th place model at MDX 2021 leaderboard A.

The training code for the 4th place model at MDX 2021 leaderboard A.

Chin-Yun Yu 32 Dec 18, 2022
A combination of autoregressors and autoencoders using XLNet for sentiment analysis

A combination of autoregressors and autoencoders using XLNet for sentiment analysis Abstract In this paper sentiment analysis has been performed in or

James Zaridis 2 Nov 20, 2021