Implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".

Overview

PPO-BiHyb

This is the official implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".

A Brief introduction

In this paper, we propose a general deep learning pipeline for combinatorial optimization problems on graphs. The neural network is learned with Proximal Policy Optimization (PPO), under our Bi-Level Hybrid optimization pipeline. Thus our method is called PPO-BiHyb. This section is aimed for a brief summary, and we recommend referring to our paper if you do not want to miss any details.

The family of existing machine learning for combinatorial optimization methods follow the following single-level pipeline: single-level optimization and the neural network is designed to lean the mapping from the input graph G to the decision variable X. It brings challenges like the sparse reward issue in RL training, and it also makes the model design non-trivial to ensure that it has enough model capacity to learn such a mapping.

In contrast, in this paper, we propose a bi-level optimization formulation: bi-level optimization where we introduce the optimized graph G'. The upper-level problem is to optimize G', and we design a PPO-based agent for this task; the lower-level optimization is to solve the optimization problem with G', and we resort to existing heuristic algorithms for this task.

The overview of our pipeline is summarized as follows overview

And Here is our implementation of the proposed framework on 3 problems: implement-on-3-problems

  • DAG scheduling problem models the computer resource scheduling problem in data centers, where the computer jobs are represented by Directed Acyclic Graphs (DAGs) and our aim is to minimize the makespan time to finish all jobs as soon as possible. This optimization problem is NP-hard.
  • Graph Edit Distance (GED) problem is a popular graph distance metric, and it is inherently an NP-hard combinatorial optimization problem whose aim is to minimize the graph edit cost between two graphs.
  • Hamiltonian Cycle Problem (HCP) arises from the famous 7 bridges problem by Euler: given a graph, decide whether exist a valid Hamiltonian cycle in this graph (i.e. a path that travels all nodes without visiting a node twice). This decision problem is NP-complete.

Experiment Results

DAG scheduling (objective & relative: smaller is better)

TPC-H-50 (#nodes=467.2) TPC-H-100 (#nodes=929.8) TPC-H-150 (#nodes=1384.5)
objective relative objective relative objective relative
shortest job first 12818 30.5% 19503 15.3% 27409 12.2%
tetris scheduling 12113 23.3% 18291 8.1% 25325 3.7%
critical path 9821 0.0% 16914 0.0% 24429 0.0%
PPO-Single 10578 7.7% 17282 2.2% 24822 1.6%
Random-BiHyb 9270 -5.6% 15580 -7.9% 22930 -6.1%
PPO-BiHyb (ours) 8906 -9.3% 15193 -10.2% 22371 -8.4%

GED (objective & relative: smaller is better)

AIDS-20/30 (#nodes=22.6) AIDS-30/50 (#nodes=37.9) AIDS-50+ (#nodes=59.6)
objective relative objective relative objective relative
Hungarian 72.9 94.9% 153.4 117.9% 225.6 121.4%
RRWM 72.1 92.8% 139.8 98.6% 214.6 110.6%
Hungarian-Search 44.6 19.3% 103.9 47.6% 143.8 41.1%
IPFP 37.4 0.0% 70.4 0.0% 101.9 0.0%
PPO-Single 56.5 51.1% 110.0 56.3% 183.9 80.5%
Random-BiHyb 33.1 -11.5% 66.0 -6.3% 82.4 -19.1%
PPO-BiHyb (ours) 29.1 -22.2% 61.1 -13.2% 77.0 -24.4%

HCP (TSP objective: smaller is better, found cycles: larger is better)

FHCP-500/600 (#nodes=535.1)
TSP objective found cycles
Nearest Neighbor 79.6 0%
Farthest Insertion 133.0 0%
LKH3-fast 13.8 0%
LKH3-accu 6.3 20%
PPO-Single 9.5 0%
Random-BiHyb 10.0 0%
PPO-BiHyb (ours) 6.7 25%

Environment set up

This code is developed and tested on Ubuntu 16.04 with Python 3.6.9, Pytorch 1.7.1, CUDA 10.1.

Install required pacakges:

export TORCH=1.7.0
export CUDA=cu101
pip install torch==1.7.1+${CUDA} torchvision==0.8.2+${CUDA} torchaudio===0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
pip install --no-index --upgrade torch-scatter -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install --no-index --upgrade torch-sparse -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install --no-index --upgrade torch-spline-conv -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install --upgrade torch-geometric
pip install tensorboard
pip install networkx==2.2
pip install ortools
pip install texttable
pip install tsplib95
pip install cython

Install SVN which is required when retriving the GED dataset:

sudo apt install subversion

Compile the A-star code which is required by the GED problem:

python3 setup.py build_ext --inplace

Install LKH-3 which is required by the HCP experiment:

wget http://webhotel4.ruc.dk/~keld/research/LKH-3/LKH-3.0.6.tgz
tar xvfz LKH-3.0.6.tgz
cd LKH-3.0.6
make

And you should find an executable at ./LKH-3.0.6/LKH, which will be called by our code.

Run Experiments

We provide the implementation of PPO-BiHyb and the single-level RL baseline PPO-Single used in our paper. To run evaluation from a pretrained model, replace train by eval in the following commands.

DAG Scheduling

PPO-BiHyb:

python dag_ppo_bihyb_train.py --config ppo_bihyb_dag.yaml

PPO-Single:

python dag_ppo_single_train.py --config ppo_single_dag.yaml

To test different problem sizes, please modify this entry in the yaml file: num_init_dags: 50 (to reproduce the results in our paper, please set 50/100/150)

Graph Edit Distance (GED)

PPO-BiHyb:

python ged_ppo_bihyb_train.py --config ppo_bihyb_ged.yaml

PPO-Single:

python ged_ppo_single_train.py --config ppo_single_ged.yaml

To test different problem sizes, please modify this entry in the yaml file: dataset: AIDS-20-30 (to reproduce the results in our paper, please set AIDS-20-30/AIDS-30-50/AIDS-50-100)

Hamiltonian Cycle Problem (HCP)

PPO-BiHyb:

python hcp_ppo_bihyb_train.py --config ppo_bihyb_hcp.yaml

PPO-Single:

python hcp_ppo_single_train.py --config ppo_single_hcp.yaml

Some Remarks

The yaml configs are set for the smallest sized problems by default. For PPO-Single, you may need to adjust the max_timesteps config for larger-sized problems to ensures that the RL agent can predict a valid solution.

Pretrained models

We provide pretrained models for PPO-BiHyb on these three problems, which are stored in ./pretrained. To use your own parameters, please set the test_model_weight configuration in the yaml file.

Citation and Credits

If you find our paper/code useful in your research, please citing

@inproceedings{wang2021bilevel,
    title={A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs}, 
    author={Runzhong Wang and Zhigang Hua and Gan Liu and Jiayi Zhang and Junchi Yan and Feng Qi and Shuang Yang and Jun Zhou and Xiaokang Yang},
    year={2021},
    booktitle={NeurIPS}
}

And we would like to give credits to the following online resources and thank their great work:

Owner
[email protected]
Thinklab at Shanghai Jiao Tong University, led by Prof. Junchi Yan.
<a href=[email protected]">
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.

Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat

Arnas Gečas 302 Dec 03, 2022
Fastshap: A fast, approximate shap kernel

fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes

Samuel Wilson 22 Sep 24, 2022
Dataset and Source code of paper 'Enhancing Keyphrase Extraction from Academic Articles with their Reference Information'.

Enhancing Keyphrase Extraction from Academic Articles with their Reference Information Overview Dataset and code for paper "Enhancing Keyphrase Extrac

15 Nov 24, 2022
Mengzi Pretrained Models

中文 | English Mengzi 尽管预训练语言模型在 NLP 的各个领域里得到了广泛的应用,但是其高昂的时间和算力成本依然是一个亟需解决的问题。这要求我们在一定的算力约束下,研发出各项指标更优的模型。 我们的目标不是追求更大的模型规模,而是轻量级但更强大,同时对部署和工业落地更友好的模型。

Langboat 424 Jan 04, 2023
Code for the paper "Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are in envir

Michael Janner 269 Jan 05, 2023
Generalized Decision Transformer for Offline Hindsight Information Matching

Generalized Decision Transformer for Offline Hindsight Information Matching [arxiv] If you use this codebase for your research, please cite the paper:

Hiroki Furuta 35 Dec 12, 2022
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data This is the official PyTorch implementation of the SeCo paper: @articl

ElementAI 101 Dec 12, 2022
Labels4Free: Unsupervised Segmentation using StyleGAN

Labels4Free: Unsupervised Segmentation using StyleGAN ICCV 2021 Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthet

70 Dec 23, 2022
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized

Filippo Bianchi 249 Dec 21, 2022
CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation (CVPR 2021, oral presentation) CoCosNet v2: Full-Resolution Correspondence

Microsoft 308 Dec 07, 2022
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.

Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat

Jurijs Nazarovs 7 Nov 26, 2022
Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Official Tensorflow implementation of "M-LSD: Towards Light-weight and Real-time Line

NAVER/LINE Vision 357 Jan 04, 2023
Classifying audio using Wavelet transform and deep learning

Audio Classification using Wavelet Transform and Deep Learning A step-by-step tutorial to classify audio signals using continuous wavelet transform (C

Aditya Dutt 17 Nov 29, 2022
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple

Eduardo Henrique Arnold 124 Dec 28, 2022
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

256 Dec 28, 2022
Implementation of a Transformer using ReLA (Rectified Linear Attention)

ReLA (Rectified Linear Attention) Transformer Implementation of a Transformer using ReLA (Rectified Linear Attention). It will also contain an attempt

Phil Wang 49 Oct 14, 2022
Generate vibrant and detailed images using only text.

CLIP Guided Diffusion From RiversHaveWings. Generate vibrant and detailed images using only text. See captions and more generations in the Gallery See

Clay M. 401 Dec 28, 2022
This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Miaoyun Zhao 43 Dec 27, 2022
Kaggle: Cell Instance Segmentation

Kaggle: Cell Instance Segmentation The goal of this challenge is to detect cells in microscope images. with simple view on how many cels have been ann

Jirka Borovec 9 Aug 12, 2022
Implementations of paper Controlling Directions Orthogonal to a Classifier

Classifier Orthogonalization Implementations of paper Controlling Directions Orthogonal to a Classifier , ICLR 2022, Yilun Xu, Hao He, Tianxiao Shen,

Yilun Xu 33 Dec 01, 2022