Contrastive Learning with Non-Semantic Negatives

Overview

Contrastive Learning with Non-Semantic Negatives

This repository is the official implementation of Robust Contrastive Learning Using Negative Samples with Diminished Semantics. Contrastive learning utilizes positive pairs which preserve semantic information while perturbing superficial features in the training images. Similarly, we propose to generate negative samples to make the model more robust, where only the superfluous instead of the semantic features are preserved.

Preparation

Install PyTorch and check preprocess/ for ImageNet-100 and ImageNet-Texture preprocessing scripts.

Training

The following code is used to pre-train MoCo-v2 + patch / texture-based NS. The major code is developed with minimal modifications from the official implementation.

python moco-non-sem-neg.py -a resnet50 --lr 0.03 --batch-size 128 --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  --mlp --moco-t 0.2 --aug-plus --cos --moco-k 16384 \
  --robust nonsem --num-nonsem 1 --alpha 2 --epochs 200 --patch-ratio 16 72 \
  --ckpt_path ./ckpts/mocov2_mocok16384_bs128_lr0.03_nonsem_16_72_noaug_nn1_alpha2_epoch200  \
  /path/to/imagenet-100/ 

python moco-non-sem-neg.py -a resnet50 --lr 0.03 --batch-size 128 --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  --mlp --moco-t 0.2 --aug-plus --cos --moco-k 16384 \
  --robust texture_syn --num-nonsem 1 --alpha 2 --epochs 200 \
  --ckpt_path ./ckpts/mocov2_mocok16384_bs128_lr0.03_texture_nn1_alpha2_epoch200 \
  /path/to/imagenet-100-texture/ 
  • Change /path/to/imagenet-100/ with the ImageNet-100 dataset directory.
  • Change --alpha and -moco-k to reproduce results with different configurations.

Linear Evaluation

Run following code is used to reproduce MoCo-v2 + patch-based NS model reported in Table 1.

python main_lincls.py -a resnet50 --lr 10.0 --batch-size 128 --epochs 60 \
  --pretrained ./ckpts/mocov2_mocok16384_bs128_lr0.03_nonsem_16_72_noaug_nn1_alpha2_epoch200/checkpoint_0199.pth.tar \
  --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 \
  --ckpt_path ./ckpts/mocov2_mocok16384_bs128_lr0.03_nonsem_16_72_noaug_nn1_alpha2_epoch200 \
  /path/to/imagenet-100/ 

Pre-trained Models

You can download pretrained models here:

moco-k alpha ImageNet-100 Corruption Sketch Stylized Rendition Checkpoints
MoCo-v2 16384 - 77.88±0.28 43.08±0.27 28.24±0.58 16.20±0.55 32.92±0.12 Run1, Run2, Run3
+ Texture 16384 2 77.76±0.17 43.58±0.33 29.11±0.39 16.59±0.17 33.36±0.15 Run1, Run2, Run3
+ Patch 16384 2 79.35±0.12 45.13±0.35 31.76±0.88 17.37±0.19 34.78±0.15 Run1, Run2, Run3
+ Patch 16384 3 75.58±0.52 44.45±0.15 34.03±0.58 18.60±0.26 36.89±0.11 Run1, Run2, Run3
MoCo-v2 8192 - 77.73±0.38 43.22±0.39 28.45±0.36 16.83±0.12 33.19±0.44 Run1, Run2, Run3
+ Patch 8192 2 79.54±0.32 45.48±0.20 33.36±0.45 17.81±0.32 36.31±0.37 Run1, Run2, Run3
CLIPImageClassifier wraps clip image model from transformers

CLIPImageClassifier CLIPImageClassifier wraps clip image model from transformers. CLIPImageClassifier is initialized with the argument classes, these

Jina AI 6 Sep 12, 2022
Supplementary code for TISMIR paper "Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form"

Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form This is supplementary code for the TISMIR paper Sliding-Window Pitch-Class H

1 Nov 27, 2021
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
Deep Sketch-guided Cartoon Video Inbetweening

Cartoon Video Inbetweening Paper | DOI | Video The source code of Deep Sketch-guided Cartoon Video Inbetweening by Xiaoyu Li, Bo Zhang, Jing Liao, Ped

Xiaoyu Li 37 Dec 22, 2022
Video Matting Refinement For Python

Video-matting refinement Library (use pip to install) scikit-image numpy av matplotlib Run Static background python path_to_video.mp4 Moving backgroun

3 Jan 11, 2022
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

MOSES 656 Dec 29, 2022
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
SSD: Single Shot MultiBox Detector pytorch implementation focusing on simplicity

SSD: Single Shot MultiBox Detector Introduction Here is my pytorch implementation of 2 models: SSD-Resnet50 and SSDLite-MobilenetV2.

Viet Nguyen 149 Jan 07, 2023
Fang Zhonghao 13 Nov 19, 2022
Point detection through multi-instance deep heatmap regression for sutures in endoscopy

Suture detection PyTorch This repo contains the reference implementation of suture detection model in PyTorch for the paper Point detection through mu

artificial intelligence in the area of cardiovascular healthcare 3 Jul 16, 2022
A Real-ESRGAN equipped Colab notebook for CLIP Guided Diffusion

#360Diffusion automatically upscales your CLIP Guided Diffusion outputs using Real-ESRGAN. Latest Update: Alpha 1.61 [Main Branch] - 01/11/22 Layout a

78 Nov 02, 2022
1st-in-MICCAI2020-CPM - Combined Radiology and Pathology Classification

Combined Radiology and Pathology Classification MICCAI 2020 Combined Radiology a

22 Dec 08, 2022
MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

Luis Pedro Coelho 610 Dec 14, 2022
A library for uncertainty representation and training in neural networks.

Epistemic Neural Networks A library for uncertainty representation and training in neural networks. Introduction Many applications in deep learning re

DeepMind 211 Dec 12, 2022
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023
Implementation for "Manga Filling Style Conversion with Screentone Variational Autoencoder" (SIGGRAPH ASIA 2020 issue)

Manga Filling with ScreenVAE SIGGRAPH ASIA 2020 | Project Website | BibTex This repository is for ScreenVAE introduced in the following paper "Manga F

30 Dec 24, 2022
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

Rowel Atienza 152 Dec 28, 2022
A PyTorch implementation of unsupervised SimCSE

A PyTorch implementation of unsupervised SimCSE

99 Dec 23, 2022
A CNN implementation using only numpy. Supports multidimensional images, stride, etc.

A CNN implementation using only numpy. Supports multidimensional images, stride, etc. Speed up due to heavy use of slicing and mathematical simplification..

2 Nov 30, 2021
Writeups for the challenges from DownUnderCTF 2021

cloud Challenge Author Difficulty Release Round Bad Bucket Blue Alder easy round 1 Not as Bad Bucket Blue Alder easy round 1 Lost n Found Blue Alder m

DownUnderCTF 161 Dec 31, 2022