Automatically creates genre collections for your Plex media

Overview

Plex Auto Genres

Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre specific content

  1. Requirements
  2. Optimal Setup
  3. Getting Started
  4. Automating
  5. Docker Usage
  6. Troubleshooting
Movies example (with cover art set using --set-posters flag.)

Movie Collections

Anime example

Anime Collections

Requirements

  1. Python 3 - Instructions > Windows / Mac / Linux (Not required if using Docker)
  2. TMDB Api Key (Only required for non-anime libraries)

Optimal Setup

  1. Anime / Anime Movies are in their own library on your plex server. (Anime and Anime Movies can share the same library)
  2. Standard TV Shows are in their own library on your plex server.
  3. Standard Movies are in their own library on your plex server.
  4. Proper titles for your media, this makes it easier to find the media. (see https://support.plex.tv/articles/naming-and-organizing-your-tv-show-files/)

For this to work well your plex library should be sorted. Meaning standard and non-standard media should not be in the same Plex library. Anime is an example of non-standard media.

If your anime shows and standard tv shows are in the same library, you can still use this script just choose (standard) as the type. However, doing this could cause incorrect genres added to some or all of your anime media entries.

Here is an example of my plex library setup

Plex Library Example

Getting Started

  1. Read the Optimal Setup section above
  2. Run python3 -m pip install -r requirements.txt to install the required dependencies.
  3. Rename the .env.example file to .env
  4. Rename the config/config.json.example file to config/config.json. The default settings are probably fine.
  5. Edit the .env file and set your plex username, password, and server name. If you are generating collections for standard media (non anime) you will need to also obtain an TMDB Api Key (for movies and tv shows)
    Variable Authentication method Value
    PLEX_USERNAME Username and password Your Plex Username
    PLEX_PASSWORD Username and password Your Plex Password
    PLEX_SERVER_NAME Username and password Your Plex Server Name
    PLEX_BASE_URL Token Your Plex Server base URL
    PLEX_TOKEN Token Your Plex Token
    PLEX_COLLECTION_PREFIX (Optional) Prefix for the created Plex collections. For example, with a value of "*", a collection named "Adventure", the name would instead be "*Adventure".

    Default value : ""
    TMDB_API_KEY Your TMDB api key (not required for anime library tagging)
  6. Optional, If you want to update the poster art of your collections. See posters/README.md

You are now ready to run the script

usage: plex-auto-genres.py [-h] [--library LIBRARY] [--type {anime,standard-movie,standard-tv}] [--set-posters] [--sort] [--rate-anime]
                           [--create-rating-collections] [--query QUERY [QUERY ...]] [--dry] [--no-progress] [-f] [-y]

Adds genre tags (collections) to your Plex media.

optional arguments:
  -h, --help            show this help message and exit
  --library LIBRARY     The exact name of the Plex library to generate genre collections for.
  --type {anime,standard-movie,standard-tv}
                        The type of media contained in the library
  --set-posters         uploads posters located in posters/<type> of matching collections. Supports (.PNG)
  --sort                sort collections by adding the sort prefix character to the collection sort title
  --rate-anime          update media ratings with MyAnimeList ratings
  --create-rating-collections
                        sorts media into collections based off rating
  --query QUERY [QUERY ...]
                        Looks up genre and match info for the given media title.
  --dry                 Do not modify plex collections (debugging feature)
  --no-progress         Do not display the live updating progress bar
  -f, --force           Force proccess on all media (independently of proggress recorded in logs/).
  -y, --yes

examples: 
python plex-auto-genres.py --library "Anime Movies" --type anime
python plex-auto-genres.py --library "Anime Shows" --type anime
python plex-auto-genres.py --library Movies --type standard-movie
python plex-auto-genres.py --library "TV Shows" --type standard-tv

python plex-auto-genres.py --library Movies --type standard-movie --set-posters
python plex-auto-genres.py --library Movies --type standard-movie --sort
python plex-auto-genres.py --library Movies --type standard-movie --create-rating-collections

python plex-auto-genres.py --type anime --query chihayafuru
python plex-auto-genres.py --type standard-movie --query Thor Ragnarok

Example Usage

Automating

I have conveniently included a script to help with automating the process of running plex-auto-genres when combined with any number of cron scheduling tools such as crontab, windows task scheduler, etc.

If you have experience with Docker I reccommend using my docker image which will run on a schedule.

  1. Copy .env.example to .env and update the values
  2. Copy config.json.example to config.json and update the values
  3. Each entry in the run list will be executed when you run this script
  4. Have some cron/scheduling process execute python3 automate.py, I suggest running it manually first to test that its working.

Note: The first run of this script may take a long time (minutes to hours) depending on your library sizes.

Note: Don't be alarmed if you do not see any text output. The terminal output you normally see when running plex-auto-genres.py is redirected to the log file after each executed run in your config.

Docker Usage

  1. Install Docker
  2. Install Docker Compose
  3. Clone or Download this repository
  4. Edit docker/docker-compose.yml
    1. Update the volumes: paths to point to the config,logs,posters directories in this repo.
    2. Update the environment: variables. See Getting Started.
  5. Copy config/config.json.example to config/config.json
    1. Edit the run array examples to match your needs. When the script runs, each library entry in this array will be updated on your Plex server.
  6. Run docker-compose up -d, the script will run immediately then proceed to run on a schedule every night at 1am UTC. Logs will be located at logs/plex-auto-genres-automate.log

Another Docker option of this tool can be found here.

Troubleshooting

  1. If you are not seeing any new collections close your plex client and re-open it.
  2. Delete the generated plex-*-successful.txt and plex-*-failures.txt files if you want the script to generate collections from the beginning. You may want to do this if you delete your collections and need them re-created.
  3. Having the release year in the title of a tv show or movie can cause the lookup to fail in some instances. For example Battlestar Galactica (2003) will fail, but Battlestar Galactica will not.
Owner
Shane Israel
Shane Israel
Namish Khanna 40 Oct 11, 2022
Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties

Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties 8.11.2021 Andrij Vasylenko I

Leverhulme Research Centre for Functional Materials Design 4 Dec 20, 2022
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Patrick Varilly 28 Nov 25, 2022
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

73 Jan 01, 2023
Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

TEMOS: TExt to MOtionS Generating diverse human motions from textual descriptions Description Official PyTorch implementation of the paper "TEMOS: Gen

Mathis Petrovich 187 Dec 27, 2022
SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning

SPCL SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning Update on 2021/11/25: ArXiv Ver

Binhui Xie (谢斌辉) 11 Oct 29, 2022
Hough Transform and Hough Line Transform Using OpenCV

Hough transform is a feature extraction method for detecting simple shapes such as circles, lines, etc in an image. Hough Transform and Hough Line Transform is implemented in OpenCV with two methods;

Happy N. Monday 3 Feb 15, 2022
Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Paper | Blog OFA is a unified multimodal pretrained model that unifies modalities (i.e., cross-modality, vision, language) and tasks (e.g., image gene

OFA Sys 1.4k Jan 08, 2023
Lecture materials for Cornell CS5785 Applied Machine Learning (Fall 2021)

Applied Machine Learning (Cornell CS5785, Fall 2021) This repo contains executable course notes and slides for the Applied ML course at Cornell and Co

Volodymyr Kuleshov 103 Dec 31, 2022
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
Reinforcement Learning with Q-Learning Algorithm on gym's frozen lake environment implemented in python

Reinforcement Learning with Q Learning Algorithm Q learning algorithm is trained on the gym's frozen lake environment. Libraries Used gym Numpy tqdm P

1 Nov 10, 2021
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
🎯 A comprehensive gradient-free optimization framework written in Python

Solid is a Python framework for gradient-free optimization. It contains basic versions of many of the most common optimization algorithms that do not

Devin Soni 565 Dec 26, 2022
Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Dongkyu Lee 4 Sep 18, 2022
Convert openmmlab (not only mmdetection) series model to tensorrt

MMDet to TensorRT This project aims to convert the mmdetection model to TensorRT model end2end. Focus on object detection for now. Mask support is exp

JinTian 4 Dec 17, 2021
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021

Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021 Abstract Recent works have made great success in semantic segmentation by explo

Hanzhe Hu 30 Dec 29, 2022
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022