sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

Overview

Introduction

sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

Documents

In English

https://sssegmentation.readthedocs.io/en/latest/

Supported

Supported Backbones

Supported Models

Supported Datasets

Citation

If you use this framework in your research, please cite this project.

@misc{ssseg2020,
    author = {Zhenchao Jin},
    title = {SSSegmentation: A general framework for strongly supervised semantic segmentation},
    year = {2020},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/SegmentationBLWX/sssegmentation}},
}

References

[1]. https://github.com/open-mmlab/mmcv
[2]. https://github.com/open-mmlab/mmsegmentation
Comments
  • Training on custom dataset with 4 channels

    Training on custom dataset with 4 channels

    Hi, I want to train my own dataset which has images in 4 channels - RGB images and IR(infrared) images. Could you help me out with that? How can i modify the codes of this repo to accommodate that extra channel?

    opened by cspearl 4
  • how to train with multi-gpu in one machine

    how to train with multi-gpu in one machine

    hi,i wanna train the model with 4 gpus in one machine however, your code 'distrain.sh' and 'train.py' can only train with distributed mode in multi-machine how can i modify the code ?

    opened by Kenneth-X 3
  • isnet:imagelevel.py

    isnet:imagelevel.py

    imagelevel.py : 47: feats_il = self.correlate_net(x, torch.cat([x_global, x], dim=1))

    isanet.py: 47:context = super(SelfAttentionBlock, self).forward(x, x)

    is there any problem? bug?

    opened by shujunyy123 3
  • How to modify parameters to use single card training?

    How to modify parameters to use single card training?

    How to modify parameters to use single card training?

    In addition to modifying the following in config:

    SEGMENTOR_CFG.update(distributed{'is_on':False})

    opened by kakamie 1
  • SWIN-B with DeepLabv3+ training on custom dataset

    SWIN-B with DeepLabv3+ training on custom dataset

    Hi, I am learning about Segmentation and want to try out the segmentation my custom data set. Could you please provide steps on how to use supported backbones with some particular architectures?

    If I want to use SWIN-B as my backbone on DeepLabV3+ using a custom dataset, what should be the commands and all. I could not find anything on the docs and on the github page. Could you please help.

    opened by deshwalmahesh 1
  • Is there should be 'continue'?

    Is there should be 'continue'?

    https://github.com/SegmentationBLWX/sssegmentation/blob/7a405b1a4949606deae067223ebd68cceec6b225/ssseg/modules/models/memorynet/memory.py#L176

    If there are more than one 'num_feats_per_cls' in the furture, 'break' will make this for loop only update the first memory_feature?

    opened by EricKani 1
  • 医学图像分割也很有意义,我想给你一些公开的医学图像数据集。哈哈哈哈

    医学图像分割也很有意义,我想给你一些公开的医学图像数据集。哈哈哈哈

    Hi @CharlesPikachu !UNet 也是大名鼎鼎的分割模型啊,它在医学图像分割领域是 SOTA,个人认为 Supported Models 列表里应该有名字,而且应该在 FCN 之后。哈哈哈 🥇

    虽然 PyTorch Hub 已经有预训练的 UNet 了,但我想要皮卡丘也有! 🛩️

    这里提供一些医学数据集给你参考:

    opened by S-HuaBomb 1
Releases(v1.0.0)
Official implementation for the paper: Generating Smooth Pose Sequences for Diverse Human Motion Prediction

Generating Smooth Pose Sequences for Diverse Human Motion Prediction This is official implementation for the paper Generating Smooth Pose Sequences fo

Wei Mao 28 Dec 10, 2022
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting

Official code of APHYNITY Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting (ICLR 2021, Oral) Yuan Yin*, Vincent Le Guen*

Yuan Yin 24 Oct 24, 2022
MlTr: Multi-label Classification with Transformer

MlTr: Multi-label Classification with Transformer This is official implement of "MlTr: Multi-label Classification with Transformer". Abstract The task

程星 38 Nov 08, 2022
Geometric Vector Perceptron --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Code to accompany Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL T

Dror Lab 85 Dec 29, 2022
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
Implementation of "JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting"

JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting Pytorch implementation for the paper "JOKR: Joint Keypoint Repres

45 Dec 25, 2022
Low Complexity Channel estimation with Neural Network Solutions

Interpolation-ResNet Invited paper for WSA 2021, called 'Low Complexity Channel estimation with Neural Network Solutions'. Low complexity residual con

Dianxin 10 Dec 10, 2022
Official Repository for our ICCV2021 paper: Continual Learning on Noisy Data Streams via Self-Purified Replay

Continual Learning on Noisy Data Streams via Self-Purified Replay This repository contains the official PyTorch implementation for our ICCV2021 paper.

Jinseo Jeong 22 Nov 23, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval project page | arXiv | webvid-data Repository containing the code,

225 Dec 25, 2022
Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Aquarius Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions NOTE: We are currently going through the open-source process requir

Zhiyuan YAO 0 Jun 02, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

Ramón Casero 1 Jan 07, 2022
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
PyKaldi GOP-DNN on Epa-DB

PyKaldi GOP-DNN on Epa-DB This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spani

18 Dec 14, 2022
Source code for models described in the paper "AudioCLIP: Extending CLIP to Image, Text and Audio" (https://arxiv.org/abs/2106.13043)

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding

The Hypersim Dataset For many fundamental scene understanding tasks, it is difficult or impossible to obtain per-pixel ground truth labels from real i

Apple 1.3k Jan 04, 2023
A tensorflow implementation of an HMM layer

tensorflow_hmm Tensorflow and numpy implementations of the HMM viterbi and forward/backward algorithms. See Keras example for an example of how to use

Zach Dwiel 283 Oct 19, 2022
Dataset used in "PlantDoc: A Dataset for Visual Plant Disease Detection" accepted in CODS-COMAD 2020

PlantDoc: A Dataset for Visual Plant Disease Detection This repository contains the Cropped-PlantDoc dataset used for benchmarking classification mode

Pratik Kayal 109 Dec 29, 2022