Empowering journalists and whistleblowers

Overview

Onymochat

Empowering journalists and whistleblowers

Version Python Versions Release Testted_On MIT License PR's Welcome

Onymochat is an end-to-end encrypted, decentralized, anonymous chat application. You can also host your anonymous .onion webpage with Onymochat.

  • Onymochat works over the Tor.
  • Anyone can start their own chat server from their own PC.
  • It's end-to-end encrypted.
  • It's basically magic.

Features

  • Start your own chat server for two or more users from your own PC.
  • Users can get connected to a chat server using the public key of the server.
  • You can launch your chat client and chat with anyone who has your public key and server details (after he/she/they joins the server).
  • You can launch your own anonymous .onion webpage with Onymochat. You can use this anonymous website for your journalistic works and whistleblowing.

You don't have to rely upon any third-party app to provide you with a platform/server to anonymously chat with your friend. You can host your own server and if the person you want to chat with has the server's public key, he/she/they can join the server with his/her/their chat client and chat with you.

Multiple people can use a single chat server. The chat data is deleted whenever the server is closed. The chat is end to end encrypted, so even if someone hacks into the server somehow, they won't be able to get to know what two people are talking about. It uses 4096 bit RSA keys for encryption. You connect to the chat server over the Tor network, which gives you anonymity.

Security

Let's see what makes Onyomochat a secure chat application:

  • End-to-end 4096 bit RSA encryption for messages.
  • Version 3 Onion Service for your .onion webpage.
  • Version 3 Onion Service for your chat server.
  • Connection to server over the Tor network.

Installation

Environment Setup

Onymochat requires Python 3.9 or above to run. I have tested it with Python 3.9. Make sure that you have Python added to your PATH. When you install Python in your Windows system, make sure to check 'Add Python 3.x to PATH'. If you forget to do it, see this tutorial to know how to add Python to your PATH for Windows.

Install Python

For Windows and Mac

Download Python 3.9 from here. Use the installer to install Python in your System. Download 'macOS 64-bit universal2 installer' for Mac OS. Download 'Windows x86-64 executable installer' for your Windows 64 Bit system and 'Windows x86 executable installer' for Windows 32 bit system.

For Linux

Use the following command to install Python 3.9 on your Linux system.

apt-get install python3.9

Check pip

Make sure you have pip installed in your system. Use the following command to check if you have pip installed.

pip --version

If you see a message like 'pip 21.2.2' then you have pip installed on your system. Otherwise, follow this tutorial to install pip in your system. Generally, Python comes with an ensurepip module, which can install pip in a Python environment.

python -m ensurepip --upgrade

Download Repository

Go to the GitHub repository of Onymochat: https://github.com/SamratDuttaOfficial/onymochat

Click on the green 'Code' button and click on 'Download ZIP' and unzip the archive somewhere to use Onymochat.

Or, use the command below if you have git installed in your system.

git clone https://github.com/SamratDuttaOfficial/onymochat

Install Requirements

Open up your terminal (CMD on Windows) and go to the folder where you've cloned/unzipped Onymochat. Example:

cd C:\User\Desktop\Onymochat-master

Then install all the requirements from the requirements.txt file.

Windows:

pip install -r requirements.txt

Linux and Mac OS:

pip3 install -r requirements.txt

If you're on Linux, you might need to install Tkinter separately in the following way:

sudo apt install python3-tk

This will install all of the requirements, except Tor.

Install Tor

Download and install Tor browser from the official Tor Project website: https://www.torproject.org/download/

Take a note of where you're installing Tor/Tor Browser, it will be required later.

How to Use

After installation, open the 'onymochat' subdirectory in your terminal. This directory should have a file like run_onymochat.py. Run this file.

python run_onymochat.py

If you are on Linux, run that file using the following command instead:

python3 run_onymochat.py

This will run the Onymochat program in your terminal. This will greet you with a menu. Just input the number of the option you want to go to, and hit the enter button.

First, configure Onymochat with Tor.

Configure Onymocaht with Tor

Run the program and go to option 0 (zero).

Then, on the next prompt, enter the path to tor.exe in the TorBrowser folder. This is important to configure Onymochat with Tor. You have to do this step only once after installation. Paste the path to tor.exe in the TorBrowser (or any similar name) folder.

Example (For Windows): C:\user\Desktop\Tor Browser\Browser\TorBrowser\Tor\tor.exe

Example (For Mac): Applications\TorBrowser.app\Tor\tor.real

Linux users just write 'tor' without the quotations.

Now you are ready to use Onymochat

Things You Can Do

Here are all the things you can do with Onymochat.

  1. Create new hidden service and chat server
  2. Generate encryption keys for chat
  3. Run chat client
  4. Create onion webpage
  5. Generate QR codes for your encryption keys
  6. Generate QR codes for other keys
  7. Delete all saved keys
  8. Exit

How to Chat?

Here are some steps you need to follow to chat with someone through Onymochat.

CAUTION: NEVER SHARE ANY OF YOUR PRIVATE KEYS WITH ANYONE

Step 1

First, select option 1 to create a new hidden service and server and follow the instructions given in your terminal/command window. This will be the server where the chat data will be temporarily saved (all chat data will be lost when the hidden service and server is closed). You can press Ctrl + C to close this hidden service and server when you are done chatting.

Then, share the hidden service public key with someone you want to chat with. You can do it in person by meeting that person, or through any other communication method. You can use the same hidden service (same public key) to chat with multiple persons but this comes with the risk of sharing the same keys with everyone, and someone might use them later to spam you. Or, the other person, with whom you want to chat with, can provide you with his/her/their hidden service public key and you can use it too.

Step 2

Select option 2 to generate encryption keys for your chat. You need to share your public key with any person you want to chat with.

Step 3

Select option 3 to run your chat client. There you won't need to create any new encryption keys for chatting if you don't want to. Creating more than one key will be very hard to manage and might be the reason of some problems in future.

You will need to enter your or the other person's hidden service and server's public key and also the other person's public key for encryption to chat with that person.

How to Create an Anonymous (.onion) Webpage

Step 1

In the 'onymochat' directory, go to the 'onion_webpage' directory. Edit the index.html HTML according to your preference. This will be the page for your anonymous webpage.

Step 2

Select option 4 from the main menu. You can generate a new URL for your .onion webpage and save the private key of that webpage to resume the webpage later with the same URL. Or, you can use a pre-saved private key to resume your website with a particular URL you've generated before.

Generate QR Codes for Encryption Keys

Option 5, and 6 is to generate QR codes for different keys used in Onymochat. These QR codes are saved in \files\qr_codes. You can print them and share them with other people you want to communicate with.

Delete all saved keys and QR codes

Use option 7 to delete all saved public and private keys and QR codes from your system. Use this option only when you suspect a security breach.

Exit Program

Exit the program by selecting option 8 from the main menu.


Author

Created by Samrat Dutta

Github: https://github.com/SamratDuttaOfficial

Linkedin: https://www.linkedin.com/in/SamratDuttaOfficial

Buy me a coffee: https://www.buymeacoffee.com/SamratDutta


Github

Please visit the Github repository to download Onymochat and see a quick tutorial.

https://github.com/SamratDuttaOfficial/onymochat

Pull requests are always welcome.

Owner
Samrat Dutta
Developer, designer, writer. Developer of CoWiseCare.
Samrat Dutta
Gray Zone Assessment

Gray Zone Assessment Get started Clone github repository git clone https://github.com/andreanne-lemay/gray_zone_assessment.git Build docker image dock

1 Jan 08, 2022
Implementations of polygamma, lgamma, and beta functions for PyTorch

lgamma Implementations of polygamma, lgamma, and beta functions for PyTorch. It's very hacky, but that's usually ok for research use. To build, run: .

Rachit Singh 24 Nov 09, 2021
Hierarchical Attentive Recurrent Tracking

Hierarchical Attentive Recurrent Tracking This is an official Tensorflow implementation of single object tracking in videos by using hierarchical atte

Adam Kosiorek 147 Aug 07, 2021
Pytorch Implementation for Dilated Continuous Random Field

DilatedCRF Pytorch implementation for fully-learnable DilatedCRF. If you find my work helpful, please consider our paper: @article{Mo2022dilatedcrf,

DunnoCoding_Plus 3 Nov 13, 2022
An educational AI robot based on NVIDIA Jetson Nano.

JetBot Looking for a quick way to get started with JetBot? Many third party kits are now available! JetBot is an open-source robot based on NVIDIA Jet

NVIDIA AI IOT 2.6k Dec 29, 2022
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022
This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21

Deep Virtual Markers This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21 Getting Started Get sa

KimHyomin 45 Oct 07, 2022
Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications

Labelbox Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications. Use this github repository to help you s

labelbox 1.7k Dec 29, 2022
Official repository for: Continuous Control With Ensemble DeepDeterministic Policy Gradients

Continuous Control With Ensemble Deep Deterministic Policy Gradients This repository is the official implementation of Continuous Control With Ensembl

4 Dec 06, 2021
Speech-Emotion-Analyzer - The neural network model is capable of detecting five different male/female emotions from audio speeches. (Deep Learning, NLP, Python)

Speech Emotion Analyzer The idea behind creating this project was to build a machine learning model that could detect emotions from the speech we have

Mitesh Puthran 965 Dec 24, 2022
Towards Long-Form Video Understanding

Towards Long-Form Video Understanding Chao-Yuan Wu, Philipp Krähenbühl, CVPR 2021 [Paper] [Project Page] [Dataset] Citation @inproceedings{lvu2021,

Chao-Yuan Wu 69 Dec 26, 2022
NIMA: Neural IMage Assessment

PyTorch NIMA: Neural IMage Assessment PyTorch implementation of Neural IMage Assessment by Hossein Talebi and Peyman Milanfar. You can learn more from

Kyryl Truskovskyi 293 Dec 30, 2022
Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper] DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context G

Cheng Zhang 66 Nov 16, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2020 Links Doc

Sebastian Raschka 4.2k Jan 02, 2023
Simple-System-Convert--C--F - Simple System Convert With Python

Simple-System-Convert--C--F REQUIREMENTS Python version : 3 HOW TO USE Run the c

Jonathan Santos 2 Feb 16, 2022
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022
An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

CV Lab @ Yonsei University 35 Oct 26, 2022
Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

S2VC Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In thi

81 Dec 15, 2022