BErt-like Neurophysiological Data Representation

Related tags

Data AnalysisBENDR
Overview

BENDR

BErt-like Neurophysiological Data Representation

A picture of Bender from Futurama

This repository contains the source code for reproducing, or extending the BERT-like self-supervision pre-training for EEG data from the article:

BENDR: using transformers and a contrastive self-supervised learning task to learn from massive amounts of EEG data

To run these scripts, you will need to use the DN3 project. We will try to keep this updated so that it works with the latest DN3 release. If you are just looking for the BENDR model, and don't need to reproduce the article results per se, BENDR will be (or maybe already is if I forgot to update it here) integrated into DN3, in which case I would start there.

Currently, we recommend version 0.2. Feel free to open an issue if you are having any trouble.

More extensive instructions are upcoming, but in essence you will need to either:

a)  Download the TUEG dataset and pre-train new encoder and contextualizer weights, _or_
b)  Use the [pre-trained model weights](https://github.com/SPOClab-ca/BENDR/releases/tag/v0.1-alpha)

Once you have a pre-trained model:

1) Add the paths of the pre-trained weights to configs/downstream.yml
2) Edit paths to local copies of your datasets in configs/downstream_datasets.yml
3) Run downstream.sh

Comments
  • about the loss function

    about the loss function

    Very appreciate for your contribution.i am really interested in the self training in EEG. The only question is about calculating loss function. In your paper, The calculation of the denominator uses cosine similarity between the output of the transformer and the 20 distractors and the input of the transformer. However, in the code, the calculation of the denominator uses cosine similarity between the input of the transformer and the 20 distractors, and the output of the transformer. In other word, the output and the input switch positions. Are both the calculation approaches the same? Or why did you change the calculation approache in the code? Thanks!

    opened by stickOverCarrot 2
  • About deploy downstream.yml and downstream_datasets.yml

    About deploy downstream.yml and downstream_datasets.yml

    Tranks for supplying your code. But when I follow your markdown, I meet some problems image

    This is my project files image

    This is my downstream.yml image

    This is my downstream_datasets.yml image

    opened by YoloEliwa 1
  • Pre-trained weights?

    Pre-trained weights?

    Not an issue per se, but you state the pre-trained weights for your paper are available in this repo, yet I have had a good look around and I haven't found them, nor a means of downloading them. Please can you let me know where I could find them? I'm really keen to try out this exciting architecture you've put together!

    opened by SgtWhiskeyjack 1
  • result_tracking module

    result_tracking module

    There's a reference that's in the module import: downstream.py from result_tracking import ThinkerwiseResultTracker that looks like some type of tracking code for experiments?

    opened by bencten 1
  • dropout should change

    dropout should change

    Iteration: 4%|▍ | 13/330 [00:36<16:00, 3.03s/batches, bac=0.5, Accuracy=0.51, loss=0.695, lr=1.47e-6]D:\Anaconda\envs\LGG\lib\site-packages\torch\nn\functional.py:1338: UserWarning: dropout2d: Received a 3D input to dropout2d and assuming that channel-wise 1D dropout behavior is desired - input is interpreted as shape (N, C, L), where C is the channel dim. This behavior will change in a future release to interpret the input as one without a batch dimension, i.e. shape (C, H, W). To maintain the 1D channel-wise dropout behavior, please switch to using dropout1d instead. warnings.warn("dropout2d: Received a 3D input to dropout2d and assuming that channel-wise "

    opened by zy2021314 0
  • A more detailed explanation

    A more detailed explanation

    We need to use your code for research, may I ask when you can provide detailed explanation, because we have some difficulties in understanding the code without detailed explanation.

    opened by EchizenMike 0
  • preload in downstream.yml

    preload in downstream.yml

    In the "downstream.yml" file, what is the function of the "preload"? What's mean if I specify "preload: True" or "preload: False"?

    Thank you in advance

    opened by frannfuri 0
Releases(v0.1-alpha)
pyhsmm MITpyhsmm - Bayesian inference in HSMMs and HMMs. MIT

Bayesian inference in HSMMs and HMMs This is a Python library for approximate unsupervised inference in Bayesian Hidden Markov Models (HMMs) and expli

Matthew Johnson 527 Dec 04, 2022
Weather analysis with Python, SQLite, SQLAlchemy, and Flask

Surf's Up Weather analysis with Python, SQLite, SQLAlchemy, and Flask Overview The purpose of this analysis was to examine weather trends (precipitati

Art Tucker 1 Sep 05, 2021
OpenARB is an open source program aiming to emulate a free market while encouraging players to participate in arbitrage in order to increase working capital.

Overview OpenARB is an open source program aiming to emulate a free market while encouraging players to participate in arbitrage in order to increase

Tom 3 Feb 12, 2022
Spectral Analysis in Python

SPECTRUM : Spectral Analysis in Python contributions: Please join https://github.com/cokelaer/spectrum contributors: https://github.com/cokelaer/spect

Thomas Cokelaer 280 Dec 16, 2022
Vectorizers for a range of different data types

Vectorizers for a range of different data types

Tutte Institute for Mathematics and Computing 69 Dec 29, 2022
DaCe is a parallel programming framework that takes code in Python/NumPy and other programming languages

aCe - Data-Centric Parallel Programming Decoupling domain science from performance optimization. DaCe is a parallel programming framework that takes c

SPCL 330 Dec 30, 2022
Evidence enables analysts to deliver a polished business intelligence system using SQL and markdown.

Evidence enables analysts to deliver a polished business intelligence system using SQL and markdown

915 Dec 26, 2022
A neural-based binary analysis tool

A neural-based binary analysis tool Introduction This directory contains the demo of a neural-based binary analysis tool. We test the framework using

Facebook Research 208 Dec 22, 2022
This tool parses log data and allows to define analysis pipelines for anomaly detection.

logdata-anomaly-miner This tool parses log data and allows to define analysis pipelines for anomaly detection. It was designed to run the analysis wit

AECID 32 Nov 27, 2022
Vaex library for Big Data Analytics of an Airline dataset

Vaex-Big-Data-Analytics-for-Airline-data A Python notebook (ipynb) created in Jupyter Notebook, which utilizes the Vaex library for Big Data Analytics

Nikolas Petrou 1 Feb 13, 2022
PySpark bindings for H3, a hierarchical hexagonal geospatial indexing system

h3-pyspark: Uber's H3 Hexagonal Hierarchical Geospatial Indexing System in PySpark PySpark bindings for the H3 core library. For available functions,

Kevin Schaich 12 Dec 24, 2022
Python library for creating data pipelines with chain functional programming

PyFunctional Features PyFunctional makes creating data pipelines easy by using chained functional operators. Here are a few examples of what it can do

Pedro Rodriguez 2.1k Jan 05, 2023
Program that predicts the NBA mvp based on data from previous years.

NBA MVP Predictor A machine learning model using RandomForest Regression that predicts NBA MVP's using player data. Explore the docs » View Demo · Rep

Muhammad Rabee 1 Jan 21, 2022
talkbox is a scikit for signal/speech processing, to extend scipy capabilities in that domain.

talkbox is a scikit for signal/speech processing, to extend scipy capabilities in that domain.

David Cournapeau 76 Nov 30, 2022
ToeholdTools is a Python package and desktop app designed to facilitate analyzing and designing toehold switches, created as part of the 2021 iGEM competition.

ToeholdTools Category Status Repository Package Build Quality A library for the analysis of toehold switch riboregulators created by the iGEM team Cit

0 Dec 01, 2021
Minimal working example of data acquisition with nidaqmx python API

Data Aquisition using NI-DAQmx python API Based on this project It is a minimal working example for data acquisition using the NI-DAQmx python API. It

Pablo 1 Nov 05, 2021
Implementation in Python of the reliability measures such as Omega.

reliabiliPy Summary Simple implementation in Python of the [reliability](https://en.wikipedia.org/wiki/Reliability_(statistics) measures for surveys:

Rafael Valero Fernández 2 Apr 27, 2022
ASOUL直播间弹幕抓取&&数据分析

ASOUL直播间弹幕抓取&&数据分析(更新中) 这些文件用于爬取ASOUL直播间的弹幕(其他直播间也可以)和其他信息,以及简单的数据分析生成。

159 Dec 10, 2022
Developed for analyzing the covariance for OrcVIO

about This repo is developed for analyzing the covariance for OrcVIO environment setup platform ubuntu 18.04 using conda conda env create --file envir

Sean 1 Dec 08, 2021
PyIOmica (pyiomica) is a Python package for omics analyses.

PyIOmica (pyiomica) This repository contains PyIOmica, a Python package that provides bioinformatics utilities for analyzing (dynamic) omics datasets.

G. Mias Lab 13 Jun 29, 2022