Helper tools to construct probability distributions built from expert elicited data for use in monte carlo simulations.

Related tags

Data Analysiselicited
Overview

Elicited

Helper tools to construct probability distributions built from expert elicited data for use in monte carlo simulations.

Credit to Brett Hoover, packaging by @magoo

Usage

pip install elicited
import elicited as e

elicited is just a helper tool when using numpy and scipy, so you'll need these in your code.

import numpy as np
from scipy.stats import poisson, zipf, beta, pareto, lognorm

Lognormal

See Occurance and Applications for examples of lognormal distributions in nature.

Expert: Most customers hold around $20K (mode) but I could imagine a customer with $2.5M (max)

mode = 20000
max = 2500000

mean, stdv = e.elicitLogNormal(mode, max)
asset_values = lognorm(s=stdv, scale=np.exp(mean))
asset_values.rvs(100)

Pareto

The 80/20 rule. See Occurance and Applications

Expert: The legal costs of an incident could be devastating. Typically costs are almost zero (val_min) but a black swan could be $100M (val_max).

b = e.elicitPareto(val_min, val_max)
p = pareto(b, loc=val_min-1., scale=1.))

PERT

See PERT Distribution

Expert: Our customers have anywhere from $500-$6000 (val_min / val_max), but it's most typically around $4500 (val_mod)

PERT_a, PERT_b = e.elicitPERT(val_min, val_mod, val_max)
pert = beta(PERT_a, PERT_b, loc=val_min, scale=val_max-val_min)

Zipf's

See Applications

Expert: If we get sued, there will only be a few litigants (nMin). Very rarely it could be 30 or more litigants (nMax), maybe once every thousand cases (pMax) it would be more.

nMin = 1
nMax = 30
pMax = 1/1000

Zs = e.elicitZipf(nMin, nMax, pMax, report=True)

litigants = zipf(Zs, nMin-1)

litigants.rvs(100)

Reference: Other Useful Elicitations

Listed as a courtesy, these distributions are simple enough to elicit data into directly without a helper function.

Uniform

A "zero knowledge" distribution where all values within the range have equal probability of appearing. Similar to random.randint(a, b)

Expert: The crowd will be between 50 (min) and 500 (max) due to fire code restrictions and the existing residents in the building.

from scipy.stats import uniform

min = 50
max = 500

range = max - min

crowd_size = uniform(min, range)
crowd_size.rvs(100)

Poisson

Expert: About 3000 Customers (average) add a credit card to their account every quarter.

from scipy.stats import poisson
average = 3000
upsells = poisson(average)
upsells.rvs(100)
Owner
Ryan McGeehan
Founder / Advisor @ HackerOne Former Director of Security @ Coinbase Former Director of Security @ Facebook
Ryan McGeehan
Open-source Laplacian Eigenmaps for dimensionality reduction of large data in python.

Fast Laplacian Eigenmaps in python Open-source Laplacian Eigenmaps for dimensionality reduction of large data in python. Comes with an wrapper for NMS

17 Jul 09, 2022
Elasticsearch tool for easily collecting and batch inserting Python data and pandas DataFrames

ElasticBatch Elasticsearch buffer for collecting and batch inserting Python data and pandas DataFrames Overview ElasticBatch makes it easy to efficien

Dan Kaslovsky 21 Mar 16, 2022
Data pipelines built with polars

valves Warning: the project is very much work in progress. Valves is a collection of functions for your data .pipe()-lines. This project aimes to host

14 Jan 03, 2023
DefAP is a program developed to facilitate the exploration of a material's defect chemistry

DefAP is a program developed to facilitate the exploration of a material's defect chemistry. A large number of features are provided and rapid exploration is supported through the use of autoplotting

6 Oct 25, 2022
Convert monolithic Jupyter notebooks into Ploomber pipelines.

Soorgeon Join our community | Newsletter | Contact us | Blog | Website | YouTube Convert monolithic Jupyter notebooks into Ploomber pipelines. soorgeo

Ploomber 65 Dec 16, 2022
simple way to build the declarative and destributed data pipelines with python

unipipeline simple way to build the declarative and distributed data pipelines. Why you should use it Declarative strict config Scaffolding Fully type

aliaksandr-master 0 Jan 26, 2022
My first Python project is a simple Mad Libs program.

Python CLI Mad Libs Game My first Python project is a simple Mad Libs program. Mad Libs is a phrasal template word game created by Leonard Stern and R

Carson Johnson 1 Dec 10, 2021
The official repository for ROOT: analyzing, storing and visualizing big data, scientifically

About The ROOT system provides a set of OO frameworks with all the functionality needed to handle and analyze large amounts of data in a very efficien

ROOT 2k Dec 29, 2022
TextDescriptives - A Python library for calculating a large variety of statistics from text

A Python library for calculating a large variety of statistics from text(s) using spaCy v.3 pipeline components and extensions. TextDescriptives can be used to calculate several descriptive statistic

150 Dec 30, 2022
ETL flow framework based on Yaml configs in Python

ETL framework based on Yaml configs in Python A light framework for creating data streams. Setting up streams through configuration in the Yaml file.

Павел Максимов 18 Jul 06, 2022
A Python module for clustering creators of social media content into networks

sm_content_clustering A Python module for clustering creators of social media content into networks. Currently supports identifying potential networks

72 Dec 30, 2022
A simple and efficient tool to parallelize Pandas operations on all available CPUs

Pandaral·lel Without parallelization With parallelization Installation $ pip install pandarallel [--upgrade] [--user] Requirements On Windows, Pandara

Manu NALEPA 2.8k Dec 31, 2022
GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors

GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors. GWpy provides a user-f

GWpy 342 Jan 07, 2023
A stock analysis app with streamlit

StockAnalysisApp A stock analysis app with streamlit. You select the ticker of the stock and the app makes a series of analysis by using the price cha

Antonio Catalano 50 Nov 27, 2022
Uses MIT/MEDSL, New York Times, and US Census datasources to analyze per-county COVID-19 deaths.

Covid County Executive summary Setup Install miniconda, then in the command line, run conda create -n covid-county conda activate covid-county conda i

Ahmed Fasih 1 Dec 22, 2021
Dbt-core - dbt enables data analysts and engineers to transform their data using the same practices that software engineers use to build applications.

Dbt-core - dbt enables data analysts and engineers to transform their data using the same practices that software engineers use to build applications.

dbt Labs 6.3k Jan 08, 2023
Creating a statistical model to predict 10 year treasury yields

Predicting 10-Year Treasury Yields Intitially, I wanted to see if the volatility in the stock market, represented by the VIX index (data source), had

10 Oct 27, 2021
A notebook to analyze Amazon Recommendation Review Dataset.

Amazon Recommendation Review Dataset Analyzer A notebook to analyze Amazon Recommendation Review Dataset. Features Calculates distinct user count, dis

isleki 3 Aug 22, 2022
This mini project showcase how to build and debug Apache Spark application using Python

Spark app can't be debugged using normal procedure. This mini project showcase how to build and debug Apache Spark application using Python programming language. There are also options to run Spark a

Denny Imanuel 1 Dec 29, 2021
Ejercicios Panda usando Pandas

Readme Below we add configuration details to locally test your application To co

1 Jan 22, 2022