Tandem Mass Spectrum Prediction with Graph Transformers

Overview

MassFormer

This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv.

Setting Up Environment

We recommend using conda. Three conda yml files are provided in the env/ directory (cpu.yml, cu101.yml, cu102.yml), providing different pytorch installation options (CPU-only, CUDA 10.1, CUDA 10.2). They can be trivially modified to support other versions of CUDA.

To set up an environment, run the command conda env create -f ${CONDA_YAML}, where ${CONDA_YAML} is the path to the desired yaml file.

Downloading NIST Data

Note: this step requires a Windows System or Virtual Machine

The NIST 2020 LC-MS/MS dataset can be purchased from an authorized distributor. The spectra and associated compounds can be exported to MSP/MOL format using the included lib2nist software. There is a single MSP file which contains all of the mass spectra, and multiple MOL files which include the molecular structure information for each spectrum (linked by ID). We've included a screenshot describing the lib2nist export settings.

Alt text

There is a minor bug in the export software that sometimes results in errors when parsing the MOL files. To fix this bug, run the script python mol_fix.py ${MOL_DIR}, where ${MOL_DIR} is a path to the NIST export directory with MOL files.

Downloading Massbank Data

The MassBank of North America (MB-NA) data is in MSP format, with the chemical information provided in the form of a SMILES string (as opposed to a MOL file). It can be downloaded from the MassBank website, under the tab "LS-MS/MS Spectra".

Exporting and Preparing Data

We recommend creating a directory called data/ and placing the downloaded and uncompressed data into a folder data/raw/.

To parse both of the datasets, run parse_and_export.py. Then, to prepare the data for model training, run prepare_data.py. By default the processed data will end up in data/proc/.

Setting Up Weights and Biases

Our implementation uses Weights and Biases (W&B) for logging and visualization. For full functionality, you must set up a free W&B account.

Training Models

A default config file is provided in "config/template.yml". This trains a MassFormer model on the NIST HCD spectra. Our experiments used systems with 32GB RAM, 1 Nvidia RTX 2080 (11GB VRAM), and 6 CPU cores.

The config/ directory has a template config file template.yml and 8 files corresponding to the experiments from the paper. The template config can be modified to train models of your choosing.

To train a template model without W&B with only CPU, run python runner.py -w False -d -1

To train a template model with W&B on CUDA device 0, run python runner.py -w True -d 0

Reproducing Tables

To reproduce a model from one of the experiments in Table 2 or Table 3 from the paper, run python runner.py -w True -d 0 -c ${CONFIG_YAML} -n 5 -i ${RUN_ID}, where ${CONFIG_YAML} refers to a specific yaml file in the config/ directory and ${RUN_ID} refers to an arbitrary but unique integer ID.

Reproducing Visualizations

The explain.py script can be used to reproduce the visualizations in the paper, but requires a trained model saved on W&B (i.e. by running a script from the previous section).

To reproduce a visualization from Figures 2,3,4,5, run python explain.py ${WANDB_RUN_ID} --wandb_mode=online, where ${WANDB_RUN_ID} is the unique W&B run id of the desired model's completed training script. The figues will be uploaded as PNG files to W&B.

Reproducing Sweeps

The W&B sweep config files that were used to select model hyperparameters can be found in the sweeps/ directory. They can be initialized using wandb sweep ${PATH_TO_SWEEP}.

Owner
Röst Lab
Röst lab at U of T -- join us at https://gitter.im/Roestlab/Lobby
Röst Lab
A concise grammar of interactive graphics, built on Vega.

Vega-Lite Vega-Lite provides a higher-level grammar for visual analysis that generates complete Vega specifications. You can find more details, docume

Vega 4k Jan 08, 2023
Generate knowledge graphs with interesting geometries, like lattices

Geometric Graphs Generate knowledge graphs with interesting geometries, like lattices. Works on Python 3.9+ because it uses cool new features. Get out

Charles Tapley Hoyt 5 Jan 03, 2022
Rubrix is a free and open-source tool for exploring and iterating on data for artificial intelligence projects.

Open-source tool for exploring, labeling, and monitoring data for AI projects

Recognai 1.5k Jan 07, 2023
📊📈 Serves up Pandas dataframes via the Django REST Framework for use in client-side (i.e. d3.js) visualizations and offline analysis (e.g. Excel)

📊📈 Serves up Pandas dataframes via the Django REST Framework for use in client-side (i.e. d3.js) visualizations and offline analysis (e.g. Excel)

wq framework 1.2k Jan 01, 2023
mysql relation charts

sqlcharts 自动生成数据库关联关系图 复制settings.py.example 重命名为settings.py 将数据库配置信息填入settings.DATABASE,目前支持mysql和postgresql 执行 python build.py -b,-b是读取数据库表结构,如果只更新匹

6 Aug 22, 2022
Visualize tensors in a plain Python REPL using Sparklines

Visualize tensors in a plain Python REPL using Sparklines

Shawn Presser 43 Sep 03, 2022
Data Visualization Guide for Presentations, Reports, and Dashboards

This is a highly practical and example-based guide on visually representing data in reports and dashboards.

Anton Zhiyanov 395 Dec 29, 2022
Automatization of BoxPlot graph usin Python MatPlotLib and Excel

BoxPlotGraphAutomation Automatization of BoxPlot graph usin Python / Excel. This file is an automation of BoxPlot-Graph using python graph library mat

EricAugustin 1 Feb 07, 2022
Compute and visualise incidence (reworking of the original incidence package)

incidence2 incidence2 is an R package that implements functions and classes to compute, handle and visualise incidence from linelist data. It refocuss

15 Nov 22, 2022
This Crash Course will cover all you need to know to start using Plotly in your projects.

Plotly Crash Course This course was designed to help you get started using Plotly. If you ever felt like your data visualization skills could use an u

Fábio Neves 2 Aug 21, 2022
Bioinformatics tool for exploring RNA-Protein interactions

Explore RNA-Protein interactions. RNPFind is a bioinformatics tool. It takes an RNA transcript as input and gives a list of RNA binding protein (RBP)

Nahin Khan 3 Jan 27, 2022
Visualizations of some specific solutions of different differential equations.

Diff_sims Visualizations of some specific solutions of different differential equations. Heat Equation in 1 Dimension (A very beautiful and elegant ex

2 Jan 13, 2022
Some method of processing point cloud

Point-Cloud Some method of processing point cloud inversion the completion pointcloud to incomplete point cloud Some model of encoding point cloud to

Tan 1 Nov 19, 2021
Python+Numpy+OpenGL: fast, scalable and beautiful scientific visualization

Python+Numpy+OpenGL: fast, scalable and beautiful scientific visualization

Glumpy 1.1k Jan 05, 2023
D-Analyst : High Performance Visualization Tool

D-Analyst : High Performance Visualization Tool D-Analyst is a high performance data visualization built with python and based on OpenGL. It allows to

4 Apr 14, 2022
NumPy and Pandas interface to Big Data

Blaze translates a subset of modified NumPy and Pandas-like syntax to databases and other computing systems. Blaze allows Python users a familiar inte

Blaze 3.1k Jan 01, 2023
📊 Extensions for Matplotlib

📊 Extensions for Matplotlib

Nico Schlömer 519 Dec 30, 2022
GUI for visualization and interactive editing of SMPL-family body models ie. SMPL, SMPL-X, MANO, FLAME.

Body Model Visualizer Introduction This is a simple Open3D-based GUI for SMPL-family body models. This GUI lets you play with the shape, expression, a

Muhammed Kocabas 207 Jan 01, 2023
Resources for teaching & learning practical data visualization with python.

Practical Data Visualization with Python Overview All views expressed on this site are my own and do not represent the opinions of any entity with whi

Paul Jeffries 98 Sep 24, 2022
Parallel t-SNE implementation with Python and Torch wrappers.

Multicore t-SNE This is a multicore modification of Barnes-Hut t-SNE by L. Van der Maaten with python and Torch CFFI-based wrappers. This code also wo

Dmitry Ulyanov 1.7k Jan 09, 2023