Captcha Recognition

Overview

Captcha Recognition

Problem Definition

CAPTCHA (Completely Automated Public Turing Test to tell Computers and Humans Apart) is an automated test created to prevent websites from being repeatedly accessed by an automatic program in a short period of time and wasting network resources. Among all the CAPTCHAs, commonly used types contain low resolution, deformed characters with character adhesions and background noise, which the user must read and type correctly into an input box. This is a relatively simple task for humans, taking an average of 10 seconds to solve, but it presents a difficulty for computers, because such noise makes it difficult for a program to differentiate the characters from them. The main objective of this project is to recognize the target numbers in the captcha images correctly.

The mainstream CAPTCHA is based on visual representation, including images such as letters and text. Traditional CAPTCHA recognition includes three steps: image pre-processing, character segmentation, and character recognition. Traditional methods have generalization capabilities and robustness for different types of CAPTCHA. The stickiness is poor. As a kind of deep neural network, convolutional neural network has shown excellent performance in the field of image recognition, and it is much better than traditional machine learning methods. Compared with traditional methods, the main advantage of CNN lies in the convolutional layer in which the extracted image features have strong expressive ability, avoiding the problems of data pre-processing and artificial design features in traditional recognition technology. Although CNN has achieved certain results, the recognition effect of complex CAPTCHA is insufficient

Dataset

The dataset contains CAPTCHA images. The images are 5 letter words, and have noise applied (blur and a line). They are of size 200 x 50. The file name is same as the image letters.
Link for the dataset: https://www.kaggle.com/fournierp/captcha-version-2-images

image

Image Pre-Processing

Three transformations have been applied to the data:

  1. Adaptive Thresholding
  2. Morphological transformations
  3. Gaussian blurring

Adaptive Thresholding

Thresholding is the process of converting a grayscale image to a binary image (an image that contains only black and white pixels). This process is explained in the steps below: • A threshold value is determined according to the requirements (Say 128). • The pixels of the grayscale image with values greater than the threshold (>128) are replaced with pixels of maximum pixel value(255). • The pixels of the grayscale image with values lesser than the threshold (<128) are replaced with pixels of minimum pixel value(0). But this method doesn’t perform well on all images, especially when the image has different lighting conditions in different areas. In such cases, we go for adaptive thresholding. In adaptive thresholding the threshold value for each pixel is determined individually based on a small region around it. Thus we get different thresholds for different regions of the image and so this method performs well on images with varying illumination.

The steps involved in calculating the pixel value for each of the pixels in the thresholded image are as follows: • The threshold value T(x,y) is calculated by taking the mean of the blockSize×blockSize neighborhood of (x,y) and subtracting it by C (Constant subtracted from the mean or weighted mean). • Then depending on the threshold type passed, either one of the following operations in the below image is performed:

image

OpenCV provides us the adaptive threshold function to perform adaptive thresholding : Thres_img=cv.adaptiveThreshold ( src, maxValue, adaptiveMethod, thresholdType, blockSize, C) Image after applying adaptive thresholding :

image

Morphological Transformations

Morphological transformations are some simple operations based on the image shape. It is normally performed on binary images. Two basic morphological operators are Erosion and Dilation. Then its variant forms like Opening, Closing, Gradient etc also comes into play. For this project I have used its variant form closing, closing is a dilation followed by an erosion. As the name suggests, a closing is used to close holes inside of objects or for connecting components together. An erosion in an image “erodes” the foreground object and makes it smaller. A foreground pixel in the input image will be kept only if all pixels inside the structuring element are > 0. Otherwise, the pixels are set to 0 (i.e., background). Erosion is useful for removing small blobs in an image or disconnecting two connected objects. The opposite of an erosion is a dilation. Just like an erosion will eat away at the foreground pixels, a dilation will grow the foreground pixels. Dilations increase the size of foreground objects and are especially useful for joining broken parts of an image together. Performing the closing operation is again accomplished by making a call to cv2.morphologyEx, but this time we are going to indicate that our morphological operation is a closing by specifying the cv2.MORPH_CLOSE. Image after applying morphological transformation:

image

Gaussian Blurring

Gaussian smoothing is used to remove noise that approximately follows a Gaussian distribution. The end result is that our image is less blurred, but more “naturally blurred,” than using the average in average blurring. Furthermore, based on this weighting we’ll be able to preserve more of the edges in our image as compared to average smoothing. Gaussian blurring is similar to average blurring, but instead of using a simple mean, we are now using a weighted mean, where neighbourhood pixels that are closer to the central pixel contribute more “weight” to the average. Gaussian smoothing uses a kernel of M X N, where both M and N are odd integers. Image after applying Gaussian blurring:

image

After applying all these image pre-processing techniques, images have been converted into n-dimension array

image

Further 2 more transformations have been applied on this n-dimensional array. The pixel values initially range from 0-255. They are first brought to 0-1 range by dividing all pixel values by 255. Then, they are normalized. Then, the data is shuffled and splitted into training and validation sets. Since the number of samples is not big enough and in deep learning we need large amounts of data and in some cases it is not feasible to collect thousands or millions of images, so data augmentation comes to the rescue. Data Augmentation is a technique that can be used to artificially expand the size of a training set by creating modified data from the existing one. It is a good practice to use data augmentation if you want to prevent overfitting, or the initial dataset is too small to train on, or even if you want to squeeze better performance from your model. In general, data augmentation is frequently used when building a deep learning model. To augment images when using Keras as our deep learning framework we can use ImageDataGenerator (tf.keras.preprocessing.image.ImageDataGenerator) that generates batches of tensor images with real-time data augmentation.

image

image

Testing

A helper function has been made to test the model on test data in which image pre-processing and transformations have been applied to get the final output

image

Result

The model achieves:

  1. Accuracy = 89.13%
  2. Precision = 91%
  3. Recall = 90%
  4. F1-score= 90%

Below is the full report:

image

Owner
Mohit Kaushik
Mohit Kaushik
Creating of virtual elements of the graphical interface using opencv and mediapipe.

Virtual GUI Creating of virtual elements of the graphical interface using opencv and mediapipe. Element GUI Output Description Button By default the b

Aleksei 4 Jun 16, 2022
Brief idea about our project is mentioned in project presentation file.

Brief idea about our project is mentioned in project presentation file. You just have to run attendance.py file in your suitable IDE but we prefer jupyter lab.

Dhruv ;-) 3 Mar 20, 2022
QED-C: The Quantum Economic Development Consortium provides these computer programs and software for use in the fields of quantum science and engineering.

Application-Oriented Performance Benchmarks for Quantum Computing This repository contains a collection of prototypical application- or algorithm-cent

SRI International 67 Nov 30, 2022
([email protected]) Boosting Co-teaching with Compression Regularization for Label Noise

Nested-Co-teaching ([email protected]) Pytorch implementation of paper "Boosting Co-tea

YINGYI CHEN 41 Jan 03, 2023
Python bindings for JIGSAW: a Delaunay-based unstructured mesh generator.

JIGSAW: An unstructured mesh generator JIGSAW is an unstructured mesh generator and tessellation library; designed to generate high-quality triangulat

Darren Engwirda 26 Dec 13, 2022
A pure pytorch implemented ocr project including text detection and recognition

ocr.pytorch A pure pytorch implemented ocr project. Text detection is based CTPN and text recognition is based CRNN. More detection and recognition me

coura 444 Dec 30, 2022
Let's explore how we can extract text from forms

Form Segmentation Let's explore how we can extract text from any forms / scanned pages. Objectives The goal is to find an algorithm that can extract t

Philip Doxakis 42 Jun 05, 2022
Single Shot Text Detector with Regional Attention

Single Shot Text Detector with Regional Attention Introduction SSTD is initially described in our ICCV 2017 spotlight paper. A third-party implementat

Pan He 215 Dec 07, 2022
"Very simple but works well" Computer Vision based ID verification solution provided by LibraX.

ID Verification by LibraX.ai This is the first free Identity verification in the market. LibraX.ai is an identity verification platform for developers

LibraX.ai 46 Dec 06, 2022
A semi-automatic open-source tool for Layout Analysis and Region EXtraction on early printed books.

LAREX LAREX is a semi-automatic open-source tool for layout analysis on early printed books. It uses a rule based connected components approach which

162 Jan 05, 2023
OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched

OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched or copy-pasted. ocrmypdf # it's a scriptable c

jbarlow83 7.9k Jan 03, 2023
Thresholding-and-masking-using-OpenCV - Image Thresholding is used for image segmentation

Image Thresholding is used for image segmentation. From a grayscale image, thresholding can be used to create binary images. In thresholding we pick a threshold T.

Grace Ugochi Nneji 3 Feb 15, 2022
An Optical Character Recognition system using Pytesseract/Extracting data from Blood Pressure Reports.

Optical_Character_Recognition An Optical Character Recognition system using Pytesseract/Extracting data from Blood Pressure Reports. As an IOT/Compute

Ramsis Hammadi 1 Feb 12, 2022
Python-based tools for document analysis and OCR

ocropy OCRopus is a collection of document analysis programs, not a turn-key OCR system. In order to apply it to your documents, you may need to do so

OCRopus 3.2k Dec 31, 2022
Document blur detection based on Laplacian operator and text detection.

Document Blur Detection For general blurred image, using the variance of Laplacian operator is a good solution. But as for the blur detection of docum

JoeyLr 5 Oct 20, 2022
PAGE XML format collection for document image page content and more

PAGE-XML PAGE XML format collection for document image page content and more For an introduction, please see the following publication: http://www.pri

PRImA Research Lab 46 Nov 14, 2022
Motion detector, Full body detection, Upper body detection, Cat face detection, Smile detection, Face detection (haar cascade), Silverware detection, Face detection (lbp), and Sending email notifications

Security camera running OpenCV for object and motion detection. The camera will send email with image of any objects it detects. It also runs a server that provides web interface with live stream vid

Peace 10 Jun 30, 2021
Code for the ACL2021 paper "Combining Static Word Embedding and Contextual Representations for Bilingual Lexicon Induction"

CSCBLI Code for our ACL Findings 2021 paper, "Combining Static Word Embedding and Contextual Representations for Bilingual Lexicon Induction". Require

Jinpeng Zhang 12 Oct 08, 2022
Connect Aseprite to Blender for painting pixelart textures in real time

Pribambase Pribambase is a small tool that connects Aseprite and Blender, to allow painting with instant viewport feedback and all functionality of ex

117 Jan 03, 2023
Pre-Recognize Library - library with algorithms for improving OCR quality.

PRLib - Pre-Recognition Library. The main aim of the library - prepare image for recogntion. Image processing can really help to improve recognition q

Alex 80 Dec 30, 2022