Characterizing possible failure modes in physics-informed neural networks.

Overview

Characterizing possible failure modes in physics-informed neural networks

This repository contains the PyTorch source code for the experiments in the manuscript:

Aditi S. Krishnapriyan, Amir Gholami, Shandian Zhe, Robert M. Kirby, Michael W. Mahoney. Characterizing possible failure modes in physics-informed neural networks., Neural Information Processing Systems (NeurIPS) 2021.

Introduction

Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models. The typical approach is to incorporate physical domain knowledge as soft constraints on an empirical loss function and use existing machine learning methodologies to train the model. We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs. In particular, we analyze several distinct situations of widespread physical interest, including learning differential equations with convection, reaction, and diffusion operators. We provide evidence that the soft regularization in PINNs, which involves differential operators, can introduce a number of subtle problems, including making the problem ill-conditioned. Importantly, we show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize. We then describe two promising solutions to address these failure modes. The first approach is to use curriculum regularization, where the PINN's loss term starts from a simple PDE regularization, and becomes progressively more complex as the NN gets trained. The second approach is to pose the problem as a sequence-to-sequence learning task, rather than learning to predict the entire space-time at once. Extensive testing shows that we can achieve up to 1-2 orders of magnitude lower error with these methods as compared to regular PINN training.

Installation

Installation of all necessary packages can either be done via poetry or through requirements.txt. For example:

git clone [email protected]:a1k12/characterizing-pinns-failure-modes.git
cd characterizing-pinns-failure-modes
pip install .

Instructions

To run the code for the convection, diffusion, reaction, or reaction-diffusion ('rd') systems with periodic boundary conditions, the following can be run within the 'pbc_examples' folder.

python main_pbc.py [--system] [--seed] [--N_f] [--optimizer_name] [--lr] [--L] [--xgrid] [--nu] [--rho] [--beta] [--u0_str] [--layers] [--net] [--activation] [--loss_style] [--visualize] [--save_model]

Possible arguments:
--system            system of study (default: convection; also supports diffusion, reaction, rd)
--seed              used to reproduce the results (default: 0)
--N_f               number of points to sample from the interior domain (default: 1000)
--optimizer_name    optimizer to use, currently supports L-BFGS
--lr                learning rate (default: 1.0)
--L                 multiplier on the regularization parameter (default: 1.0)
--xgrid             size of the xgrid (default: 256)
--nu                viscosity coefficient for diffusion
--rho               reaction coefficient
--beta              speed of propagation for convection
--u0_str            initial condition (default: 'sin(x)'; also supports 'gauss' for reaction/reaction-diffusion)
--layers            number of layers in the network (default: '50,50,50,50,1')
--net               net architecture (default: 'DNN')
--activation        activation for the network (default: 'tanh')
--loss_style        loss function style (default: 'mse')
--visualize         option to visualize the solution (default: False)
--save_model        option to save the model (default: False)

Citation

This repository has been developed as part of the following paper. We would appreciate it if you would please cite the following paper if you found the library useful for your work:

@article{krishnapriyan2021characterizing,
  title={Characterizing possible failure modes in physics-informed neural networks},
  author={Krishnapriyan, Aditi S. and Gholami, Amir and Zhe, Shandian and Kirby, Robert and Mahoney, Michael W},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}
Owner
Aditi Krishnapriyan
Aditi Krishnapriyan
Corner-based Region Proposal Network

Corner-based Region Proposal Network CRPN is a two-stage detection framework for multi-oriented scene text. It employs corners to estimate the possibl

xhzdeng 140 Nov 04, 2022
Motion detector, Full body detection, Upper body detection, Cat face detection, Smile detection, Face detection (haar cascade), Silverware detection, Face detection (lbp), and Sending email notifications

Security camera running OpenCV for object and motion detection. The camera will send email with image of any objects it detects. It also runs a server that provides web interface with live stream vid

Peace 10 Jun 30, 2021
利用Paddle框架复现CRAFT

CRAFT-Paddle 利用Paddle框架复现CRAFT CRAFT 本项目基于paddlepaddle框架复现CRAFT,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: CRAFT: Character-Region Awarenes

QuanHao Guo 2 Mar 07, 2022
This tool will help you convert your text to handwriting xD

So your teacher asked you to upload written assignments? Hate writing assigments? This tool will help you convert your text to handwriting xD

Saurabh Daware 4.2k Jan 07, 2023
Color Picker and Color Detection tool for METR4202

METR4202 Color Detection Help This is sample code that can be used for the METR4202 project demo. There are two files provided, both running on Python

Miguel Valencia 1 Oct 23, 2021
Convolutional Recurrent Neural Networks(CRNN) for Scene Text Recognition

CRNN_Tensorflow This is a TensorFlow implementation of a Deep Neural Network for scene text recognition. It is mainly based on the paper "An End-to-En

MaybeShewill-CV 1000 Dec 27, 2022
Demo processor to illustrate OCR-D Python API

ocrd_vandalize/ Demo processor to illustrate the OCR-D/core Python API Description :TODO: write docs :) Installation From PyPI pip3 install ocrd_vanda

Konstantin Baierer 5 May 05, 2022
PyQT5 app that colorize black & white pictures using CNN(use pre-trained model which was made with OpenCV)

About PyQT5 app that colorize black & white pictures using CNN(use pre-trained model which was made with OpenCV) Colorizor Приложение для проекта Yand

1 Apr 04, 2022
Fusion 360 Add-in that creates a pair of toothed curves that can be used to split a body and create two pieces that slide and lock together.

Fusion-360-Add-In-PuzzleSpline Fusion 360 Add-in that creates a pair of toothed curves that can be used to split a body and create two pieces that sli

Michiel van Wessem 1 Nov 15, 2021
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 06, 2023
An unofficial package help developers to implement ZATCA (Fatoora) QR code easily which required for e-invoicing

ZATCA (Fatoora) QR-Code Implementation An unofficial package help developers to implement ZATCA (Fatoora) QR code easily which required for e-invoicin

TheAwiteb 28 Nov 03, 2022
Creating a virtual tv using opencv in python3.

Virtual-TV Creating a virtual tv using opencv in python3. In order to run the code follow the below given steps: Make sure the desired videos which ar

Vamsi 1 Jan 01, 2022
WACV 2022 Paper - Is An Image Worth Five Sentences? A New Look into Semantics for Image-Text Matching

Is An Image Worth Five Sentences? A New Look into Semantics for Image-Text Matching Code based on our WACV 2022 Accepted Paper: https://arxiv.org/pdf/

Andres 13 Dec 17, 2022
Face Recognizer using Opencv Python

Face Recognizer using Opencv Python The first step create your own dataset with file open-cv-create_dataset second step You can put the photo accordin

Han Izza 2 Nov 16, 2021
Hand Detection and Finger Detection on Live Feed

Hand-Detection-On-Live-Feed Hand Detection and Finger Detection on Live Feed Getting Started Install the dependencies $ git clone https://github.com/c

Chauhan Mahaveer 2 Jan 02, 2022
A set of workflows for corpus building through OCR, post-correction and normalisation

PICCL: Philosophical Integrator of Computational and Corpus Libraries PICCL offers a workflow for corpus building and builds on a variety of tools. Th

Language Machines 41 Dec 27, 2022
Repository collecting all the submodules for the new PyTorch-based OCR System.

OCRopus3 is being replaced by OCRopus4, which is a rewrite using PyTorch 1.7; release should be soonish. Please check github.com/tmbdev/ocropus for up

NVIDIA Research Projects 138 Dec 09, 2022
A Screen Translator/OCR Translator made by using Python and Tesseract, the user interface are made using Tkinter. All code written in python.

About An OCR translator tool. Made by me by utilizing Tesseract, compiled to .exe using pyinstaller. I made this program to learn more about python. I

Fauzan F A 41 Dec 30, 2022
Official code for :rocket: Unsupervised Change Detection of Extreme Events Using ML On-Board :rocket:

RaVAEn The RaVÆn system We introduce the RaVÆn system, a lightweight, unsupervised approach for change detection in satellite data based on Variationa

SpaceML 35 Jan 05, 2023
Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding for Zero-Example Video Retrieval.

Dual Encoding for Video Retrieval by Text Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding

81 Dec 01, 2022