基于图像识别的开源RPA工具,理论上可以支持所有windows软件和网页的自动化

Overview

SimpleRPA

基于图像识别的开源RPA工具,理论上可以支持所有windows软件和网页的自动化

简介

SimpleRPA是一款python语言编写的开源RPA工具(桌面自动控制工具),用户可以通过配置yaml格式的文件,来实现桌面软件的自动化控制,简化繁杂重复的工作,比如运营人员给用户发消息,打标签,给店铺插旗;项目管理人员采集数据;测试人员实现简单的自动化测试等等。

为什么是SimpleRPA

  • 这是一个基于MIT协议的开源项目,对商业应用友好
  • 市面上常见的RPA工具,虽然功能强大完善,但基本上都基于过程控制的理念,实际上成了图形化编程工具,面对稍微复杂的场景,就需要编制大量的判断跳转和子流程嵌套;而SimpleRPA针对实际RPA场景做出了合理的抽象,虽然使用YAML格式配置,实际上是一种桌面自动控制的DSL,可以更便捷地表达自动化场景。
  • 支持配置文件内嵌Python代码,可以实现更灵活的逻辑
  • 基于图像采集、智能匹配和OCR识别,可以支持任何类型的桌面应用,而无需手工分析页面结构。

状态机概念

我们做屏幕自动化任务的时候,通常都会经历这样几个步骤:

  1. 检查当前桌面上是否显示了需要的页面(比如查看特定位置的图像,或者比对OCR识别出的文字)
  2. 如果确实是,就收集一些文字或图像的信息(这一步未必会有,要看具体任务类型,有些自动化只要把页面流程走通就可以)
  3. 查找页面上特定的控件(比如某个按钮),对它进行操作(如点击)
  4. 跳转到下一个页面,回到步骤1,反复循环,直到最终页面出现

SimpleRPA把这个过程,抽象为一个状态机模型:每个页面是一个状态(state),通过“action”触发,可以跳转到下一个状态; 在每一个State内部,可以做check(检查是否需要的页面),可以find(查找特定控件,或者收集信息); 针对find的结果,还可以形成子状态,来实现复杂的操作。

示例

SimpleRPA的自动化脚本,由一个yaml配置文件,和子文件夹构成,文件夹中通常存放要查找的图像模板。

示例1——自动刷新页面

一个简单的配置文件示例如下:

# 有一个特定的浏览器页面,我们需要定时刷新,以便更新它的状态
name: "浏览器自动刷新"
ver: 0.1
# 默认不会调整屏幕分辨率,所有内容里指定的坐标,都是相对于当前屏幕左上角;
# 但如果这里指定了屏幕宽度或高度,就会在开始运行内容之前,调整分辨率
# screen_width: 3440   
# screen_height: 1440
states:
  - name: "当前窗口"
    # 为了简化,这里假设当前桌面刚刚从浏览器窗口切换到脚本运行窗口,所以一启动就先用alt+tab键切换回去
    id: 1
    transition:
      # 通过点击热键这个action, 迁移到下一个状态
      action: hotkey('alt', 'tab')
      wait: 1
  - name: "浏览器窗口"
    id: 2
    check:
      image:
          snapshot: !rect l:0, r:60, t:113, b:182
          template: auto_test/detect_logo.png
          # debug: True
      fail_action: raise_error('当前页面不是期待的页面')
    transition:
      # 通过点击F5实现浏览器刷新,迁移前先等待60s;
      # 没有其他页面需要显示了,所以还是迁移到当前状态,无限循环
      action: hotkey('f5')
      wait: 60
      to: 2

上面这个示例可以用流程图表示如下:

graph TD;
    1[当前窗口] -- Alt+Tab --> 2[浏览器窗口]
    2 -- F5 --> 2 

这里states是一个列表,每个列表项是一个状态,每个状态有一个id属性作为唯一标识。状态之间的迁移,通过transition属性的to来指定。 to指定的内容可以是某一个state的id,也可以是next(缺省值),next意味着迁移到下一个状态(按列表定义顺序,而不是id编号顺序)。

transition的action是表示触发迁移的动作,支持键盘鼠标、屏幕、剪贴板、窗口引用(目前只支持windows)等一系列操作。 transition的wait表示动作执行以后,等待的时间。

这里的check属性里面定义了image,用来检测屏幕上特定区域是否显示了指定的图案,如果图案存在,说明正确进入了当前状态; 如果不存在,会触发fail_action的执行。

示例2——

自动归档trello任务。一个典型的trello归档页面如下: trello看板归档

下面的脚本,可以帮用户自动归档所有已完成的任务。

name: "自动归档Trello"
ver: 0.5
#screen_width: 3440
#screen_height: 1440
range: !rect l:0, r:1920, t:0, b:1080
time_scale: 1
states:
  - name: "点击获取窗口焦点"
    id: 1
    transition:
      # 点击
      action: click(300, 20)
      wait: 1.5
      to: next
  - name: "已完成列表"
    id: 2
    transition:
      # 右击第一个卡片
      action: rightclick(1540, 290)
      wait: 1
      to: next
  - name: "右键菜单"
    id: 3
    find:
      image:
        snapshot: !rect l:1415, r:1805, t:239, b:609
        template: auto_trello/detect_target.png
        confidence: 0.8
      fail_action: raise_error('找不到归档按钮')
    transition:
      # 左击归档按钮
      action: click(1415 + state.find_result.center_x, 239 + state.find_result.center_y)
      wait: 1
      to: 2
      max_time: 2

配置类

实际上,每个配置项,都有对应的数据类型定义,SimpleRPA读取配置文件的时候,会通过objtyping把yaml数据转换为对应的类实例。

数据类型定义,请参照 SimpleRPA 类图

plantuml代理生成的SimpleRPA 类图

本文档开头实例中的配置文件,转换之后的实例关系图如下:SimpleRPA 示例对象图

plantuml代理生成的SimpleRPA 对象图

待实现

  • 更方便的数据读取和采集模型(目前只能基于键盘鼠标操作实现)
  • 图形化设计器(会先放出一个辅助截图工具)
  • 可扩展的操作(这样就可以自己实现
  • 发布到PyPI库,支持pip install 安装
Owner
Song Hui
Song Hui
Make OpenCV camera loops less of a chore by skipping the boilerplate and getting right to the interesting stuff

camloop Forget the boilerplate from OpenCV camera loops and get to coding the interesting stuff Table of Contents Usage Install Quickstart More advanc

Gabriel Lefundes 9 Nov 12, 2021
Official PyTorch implementation for "Mixed supervision for surface-defect detection: from weakly to fully supervised learning"

Mixed supervision for surface-defect detection: from weakly to fully supervised learning [Computers in Industry 2021] Official PyTorch implementation

ViCoS Lab 169 Dec 30, 2022
A simple QR-Code Reader in Python

A simple QR-Code Reader written in Python, that copies the content of a QR-Code directly into the copy clipboard.

Eric 1 Oct 28, 2021
caffe re-implementation of R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection

R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection Abstract This is a caffe re-implementation of R2CNN: Rotational Region CNN fo

candler 80 Dec 28, 2021
An advanced 2D image manipulation with features such as edge detection and image segmentation built using OpenCV

OpenCV-ToothPaint3-Advanced-Digital-Image-Editor This application named ‘Tooth Paint’ version TP_2020.3 (64-bit) or version 3 was developed within a w

JunHong 1 Nov 05, 2021
This is a GUI program which consist of 4 OpenCV projects

Tkinter-OpenCV Project Using Tkinter, Opencv, Mediapipe This is a python GUI program using Tkinter which consist of 4 OpenCV projects 1. Finger Counte

Arya Bagde 3 Feb 22, 2022
Erosion and dialation using structure element in OpenCV python

Erosion and dialation using structure element in OpenCV python

Tamzid hasan 2 Nov 11, 2021
chineseocr/table_line 表格线检测模型pytorch版

table_line_pytorch chineseocr/table_detct 表格线检测模型table_line pytorch版 原项目github: https://github.com/chineseocr/table-detect 1、模型转换 下载原项目table_detect模型文

1 Oct 21, 2021
OpenGait is a flexible and extensible gait recognition project

A flexible and extensible framework for gait recognition. You can focus on designing your own models and comparing with state-of-the-arts easily with the help of OpenGait.

Shiqi Yu 335 Dec 22, 2022
Textboxes : Image Text Detection Model : python package (tensorflow)

shinTB Abstract A python package for use Textboxes : Image Text Detection Model implemented by tensorflow, cv2 Textboxes Paper Review in Korean (My Bl

Jayne Shin (신재인) 91 Dec 15, 2022
Code release for Hu et al., Learning to Segment Every Thing. in CVPR, 2018.

Learning to Segment Every Thing This repository contains the code for the following paper: R. Hu, P. Dollár, K. He, T. Darrell, R. Girshick, Learning

Ronghang Hu 417 Oct 03, 2022
Total Text Dataset. It consists of 1555 images with more than 3 different text orientations: Horizontal, Multi-Oriented, and Curved, one of a kind.

Total-Text-Dataset (Official site) Updated on April 29, 2020 (Detection leaderboard is updated - highlighted E2E methods. Thank you shine-lcy.) Update

Chee Seng Chan 671 Dec 27, 2022
【Auto】原神⭐钓鱼辅助工具 | 自动收竿、校准游标 | ✨您只需要抛出鱼竿,我们会帮你完成一切✨

原神钓鱼辅助工具 ✨ 作者正在努力重构代码中……会尽快带给大家一个更完美的脚本 ✨ 「您只需抛出鱼竿,然后我们会帮您搞定一切」 如果你觉得这个脚本好用,请点一个 Star ⭐ ,你的 Star 就是作者更新最大的动力 点击这里 查看演示视频 ✨ 欢迎大家在 Issues 中分享自己的配置文件 ✨ ✨

261 Jan 02, 2023
This is a implementation of CRAFT OCR method

This is a implementation of CRAFT OCR method

Esaka 0 Nov 01, 2021
Distort a video using Seam Carving (video) and Vibrato effect (sound)

Distort videos Applies a Seam Carving algorithm (aka liquid rescale) on every frame of a video, and a vibrato effect on the audio to distort the video

AlexZeGamer 6 Dec 06, 2022
A python script based on opencv and paddleocr, which can automatically pick up tasks, make cookies, and receive rewards in the Destiny 2 Dawning Oven

A python script based on opencv and paddleocr, which can automatically pick up tasks, make cookies, and receive rewards in the Destiny 2 Dawning Oven

1 Dec 22, 2021
Reference Code for AAAI-20 paper "Multi-Stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labels"

Reference Code for AAAI-20 paper "Multi-Stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labels" Please refer to htt

Ke Sun 1 Feb 14, 2022
This is a pytorch re-implementation of EAST: An Efficient and Accurate Scene Text Detector.

EAST: An Efficient and Accurate Scene Text Detector Description: This version will be updated soon, please pay attention to this work. The motivation

Dejia Song 544 Dec 20, 2022
MeshToGeotiff - A fast Python algorithm to convert a 3D mesh into a GeoTIFF

MeshToGeotiff - A fast Python algorithm to convert a 3D mesh into a GeoTIFF Python class for converting (very fast) 3D Meshes/Surfaces to Raster DEMs

8 Sep 10, 2022
Vietnamese Language Detection and Recognition

Table of Content Introduction (Khôi viết) Dataset (đổi link thui thành 3k5 ảnh mình) Getting Started (An Viết) Requirements Usage Example Training & E

6 May 27, 2022