A set of functions and analysis classes for solvation structure analysis

Overview

SolvationAnalysis

Powered by NumFOCUS Powered by MDAnalysis GitHub Actions Status TravisCI codecov docs


The macroscopic behavior of a liquid is determined by its microscopic structure. For ionic systems, like batteries and many enzymes, the solvation environment surrounding ions is especially important. By studying the solvation of interesting materials, scientists can better understand, engineer, and design new technologies. The aim of this project is to implement a robust and cohesive set of methods for solvation analysis that would be widely useful in both biomolecular and battery electrolyte simulations. The core of the solvation module will be a set of functions for easily working with ionic solvation shells. Building from that core functionality, the module will implement several analysis methods for analyzing ion pairing, ion speciation, residence times, and shell association and dissociation.

Main development by @orioncohen, with mentorship from @richardjgowers, @IAlibay, and @hmacdope.

Acknowledgements

Project based on the Computational Molecular Science Python Cookiecutter version 1.5.

Comments
  • analysis functions

    analysis functions

    Description

    This PR will establish the analysis functions for the solvation module. Linked to issues #11, #21, and #28.

    Todos

    Notable points that this PR has either accomplished or will accomplish.

    • [x] create ion speciation class
    • [x] create coordination number class
    • [x] create solvation god class
    • [x] update documentation
    • [x] finalize data structure
    • [x] complete implementation
    • [x] finalize in-line documentation

    Status

    • [x] Ready to go
    core high-priority 
    opened by orionarcher 34
  • Parse RDF's and find minima

    Parse RDF's and find minima

    Description

    Provide a brief description of the PR's purpose here.

    Todos

    • [x] add test data
    • [x] functionality to interpolate rdfs
    • [x] functionality to find minima
    • [x] refine minima finding
    • [x] solidify unit testing

    Status

    • [x] Ready to go
    core testing high-priority 
    opened by orionarcher 20
  • Basic testing with Pytest

    Basic testing with Pytest

    Description

    Set up basic testing for current implemented functions.

    Todos

    Notable points that this PR has either accomplished or will accomplish.

    • [x] get_radial_shell testing
    • [x] get_closest_n_mol testing
    • [x] slightly rework get_closest_n_mol signature

    Status

    • [x] Ready to go
    core testing 
    opened by orionarcher 17
  • tutorials

    tutorials

    Description

    Create a convenient tutorial for users to learn solvation_analysis

    Todos

    Notable points that this PR has either accomplished or will accomplish.

    • [x] jupyter tutorial for users
    • [x] set up jupyter edit requests

    Status

    • [x] Ready to go
    documentation high-priority 
    opened by orionarcher 12
  • Decide hierarchy of analysis classes/methods

    Decide hierarchy of analysis classes/methods

    Some of our proposed functionality follows on directly from other functionality and some does not.

    This means we need to discuss how to compartmentalise functionality into classes and methods many of which will subclass analysis base.

    I thought I would make this issue as an open discussion area for how we want to compartmentalise /hierarchicalize our functionality. I think the best way to proceed is if @orioncohen can lay out how he sees it and then @richardjgowers @IAlibay and any @MDAnalysis/gsoc-mentors can weigh in. We may also need to meet to discuss this. :)

    question core high-priority 
    opened by hmacdope 11
  • add visualization tutorial

    add visualization tutorial

    Description

    Since nglview is causing issues and I don't want to get bogged down before the release, I wanted to put this in a separate thread.

    Todos

    Notable points that this PR has either accomplished or will accomplish.

    • [x] tutorial introduction
    • [x] fix nglview issues
    • [x] finish tutorial

    Questions

    • [x] Why is nglview showing too many bonds on molecules?

    Status

    • [x] Ready to go
    bug documentation enhancement 
    opened by orionarcher 10
  • Initial functions for solvation selection + documentation + testing

    Initial functions for solvation selection + documentation + testing

    Description

    Implements basic functionality for solvation selection. Currently implements get_atom_group, get_n_shells, get_closest_n_mol, and get_radial_shell. Addresses issue #5

    Todos

    Notable points that this PR has either accomplished or will accomplish.

    • [x] implement basic functionality for solvation selection
    • [x] documentation for functions
    • [x] unit tests for basic functionality

    Questions

    • [x] what doc style should be used?

    Status

    • [x] ready to go
    opened by orionarcher 10
  • Support for multi atom solutes

    Support for multi atom solutes

    Description

    This PR was split off from PR #70 to better separate quality-of-life changes from API changes. See that PR for some history and discussion.

    This is intended to be a major PR to handle multi-atom solutes. It relates to issues #47, #66, and #58.

    I would like to propose the following outline of new functionality. In this description, I will focus on the outward facing API. I'll use the somewhat trivial case of water as an example.

    1. Solution will be renamed to Solute. All references to solute in the current documentation will be renamed to solvated atom or solvated atoms. I think this better captures what the Solute class really is, especially as we expand to multi-atom Solutes.

    2. The default initializer for Solute will take only a single atom per residue. It will not support multiple identical atoms on a residue. This will be handled by the more general case. As a result, instantiating a Solute for a single atom remains the same.

    water = u.select_atoms(...)
    water_O = u.select_atoms(...)
    water_O_solute = Solute(water_O, {"water": water})
    
    1. Additional initializers will be added to instantiate a Solute, these will support multi-atom solutes.

    The first will allow the user to stitch together multiple solutes to create a new solute.

    water_H1 = u.select_atoms(...)
    water_H2 = u.select_atoms(...)
    solute_O = Solute(water_O, {"water": water})
    solute_H1 = Solute(water_H1, {"water": water})
    solute_H2 = Solute(water_H2, {"water": water})
    
    multi_atom_solute = Solute.from_solutes([solute_O, solute_H1, solute_H2])  # maybe this should be a dict?
    

    The second will allow users to simply instantiate a solute from an entire residue (or part of a residue). There may be technical challenges here so this behavior is not guaranteed.

    multi_atom_solute = Solute.from_residue(water, {"water": water})
    
    1. To support this, the solvation_data dataframe will have two additional columns added, a "residue" column and a "solute_name" column. All analysis classes will be refactored to operate on the "residue" column rather than the "solvated_atom" column. This will make no difference for single-atom solutes but will allow the analysis classes to generalize easily. I'm not completely sure the "solute_name" column is necessary, but it would be convenient to have.

    2. When a multi-atom solute is created all of the solvation_data dataframes from each constituent single-atom solute will be merged together. The "residue" column will group together solvated atoms on the same residue such that the analysis classes can operate on the whole solute. The API for accessing the residence classes will be identical.

    multi_atom_solute.coordination_number["water"]   # valid property
    
    1. We will retain all of the single atom Solutes as a property of the multi-atom Solute. This would amount to a rough doubling of the memory footprint, but it would make follow up analysis easier. I'm a bit torn here and there may be a better way.
    >>> print(water.atoms)  # what should this be called?
    >>> [solute_O, solute_H1, solute_H2]  # maybe this should be a dict?
    

    For a single atom solute the atoms list would still be present but the data within would be identical to the solvation_data of the solute itself. Single atom solutes are now just a special case of multi-atom solutes.

    water_O_solute.atoms[0].solvation_data = water_O_solute.solvation_data
    

    I'm sure there are many things I am not considering that will come up later, but as a start, I think this plan will allow the package to be generalized with maximum code reuse. I'd love feedback or suggestions on any aspect of the outline above.

    Todos

    Notable points that this PR has either accomplished or will accomplish.

    • [x] make solutions composable so that multi-atom solutes can be constructed systematically
    • [x] put guardrails in place to prevent misuse
    • [ ] bare minimum rewrite of the documentation

    Status

    • [ ] Ready to go
    enhancement core 
    opened by orionarcher 8
  • Residence times and solute-solvent network calculations

    Residence times and solute-solvent network calculations

    Description

    This PR adds an analysis module to calculate residence times and an analysis module to calculate solute-solvent networks.

    Todos

    Notable points that this PR has either accomplished or will accomplish.

    • [x] Residence module
    • [x] Change exponential fit in residence time calculations to 1/e decay point
    • [x] Networking module
    • [x] Residence testing
    • [x] Networking testing
    • [x] Residence documentation
    • [x] Networking documentation
    • [x] Add diluent_composition analysis to Pairing class
    • [x] Add module selection kwarg to Solution
    • [x] Add from_solution class method to all analysis classes
    • [x] Residence and Networking tutorial
    • [x] add citations for Networking and Residence codes
    • [x] improve documentation for Residence time
      • [x] specify caveats and difference between both implementations

    Status

    The PR is nearly finished, the main outstanding issues are improved documentation, citations and tutorials.

    enhancement 
    opened by orionarcher 8
  • Formalize Roadmap in Projects tab

    Formalize Roadmap in Projects tab

    We should decide on a model for a release schedule, Do we wish to match the MDA core idea and do quarterly (@IAlibay is that right?) releases? Or do we just want to do with major functionality change, ie at your discretion @orioncohen?

    If people want updated functionality and bugfixes, they can always clone the current main branch and install with pip install -e .

    Raising issue as food for thought.

    release 
    opened by hmacdope 8
  • Enhancements to support composable Solutions and self-solvating solutes

    Enhancements to support composable Solutions and self-solvating solutes

    UPDATE:

    This PR now implements a number of quality of life changes and solves issue #31. The proposed multi-atom solute changes will be implemented in another PR. See PR #72 for the new changes!

    Todos

    Notable points that this PR has either accomplished or will accomplish.

    • [x] add new testing data with a multi-atom solute
    • [x] remove foolish internal numbering scheme of solvated_atoms
    • [x] allow solutes to also act as solvents
    • [x] replace all column name strings with variables stored in a column_names.py file

    Status

    • [x] Ready to go

    Description

    This is intended to be a major PR to handle multi-atom solutes. It relates to issues #47, #31, #66, and #58.

    I would like to propose the following outline of new functionality. In this description, I will focus on the outward facing API. I'll use the somewhat trivial case of water as an example.

    1. Solution will be renamed to Solute. All references to solute in the current documentation will be renamed to solvated atom or solvated atoms. I think this better captures what the Solute class really is, especially as we expand to multi-atom Solutes.

    2. The default initializer for Solute will take only a single atom per residue. It will not support multiple identical atoms on a residue. This will be handled by the more general case. As a result, instantiating a Solute for a single atom remains the same. (note that I have already fixed the case with self-solvation identified in issue #31)

    water = u.select_atoms(...)
    water_O = u.select_atoms(...)
    water_O_solute = Solute(water_O, {"water": water})
    
    1. Additional initializers will be added to instantiate a Solute, these will support multi-atom solutes.

    The first will allow the user to stitch together multiple solutes to create a new solute.

    water_H1 = u.select_atoms(...)
    water_H2 = u.select_atoms(...)
    solute_O = Solute(water_O, {"water": water})
    solute_H1 = Solute(water_H1, {"water": water})
    solute_H2 = Solute(water_H2, {"water": water})
    
    multi_atom_solute = Solute.from_solutes([solute_O, solute_H1, solute_H2])  # maybe this should be a dict?
    

    The second will allow users to simply instantiate a solute from an entire residue (or part of a residue). There may be technical challenges here so this behavior is not guaranteed.

    multi_atom_solute = Solute.from_residue(water, {"water": water})
    
    1. To support this, the solvation_data dataframe will have two additional columns added, a "residue" column and a "solute_name" column. All analysis classes will be refactored to operate on the "residue" column rather than the "solvated_atom" column. This will make no difference for single-atom solutes but will allow the analysis classes to generalize easily. I'm not completely sure the "solute_name" column is necessary, but it would be convenient to have.

    2. When a multi-atom solute is created all of the solvation_data dataframes from each constituent single-atom solute will be merged together. The "residue" column will group together solvated atoms on the same residue such that the analysis classes can operate on the whole solute. The API for accessing the residence classes will be identical.

    multi_atom_solute.coordination_number["water"]   # valid property
    
    1. We will retain all of the single atom Solutes as a property of the multi-atom Solute. This would amount to a rough doubling of the memory footprint, but it would make follow up analysis easier. I'm a bit torn here and there may be a better way.
    >>> print(water.atoms)  # what should this be called?
    >>> [solute_O, solute_H1, solute_H2]  # maybe this should be a dict?
    

    For a single atom solute the atoms list would still be present but the data within would be identical to the solvation_data of the solute itself. Single atom solutes are now just a special case of multi-atom solutes.

    water_O_solute.atoms[0].solvation_data = water_O_solute.solvation_data
    

    I'm sure there are many things I am not considering that will come up later, but as a start, I think this plan will allow the package to be generalized with maximum code reuse. I'd love feedback or suggestions on any aspect of the outline above.

    Todos

    Notable points that this PR has either accomplished or will accomplish.

    • [x] add new testing data with a multi-atom solute
    • [x] remove foolish internal numbering scheme of solvated_atoms
    • [x] allow solutes to also act as solvents
    • [x] replace all column name strings with variables stored in a column_names.py file
    • [ ] make solutions composable so that multi-atom solutes can be constructed systematically
    • [ ] put guardrails in place to prevent misuse

    Status

    • [ ] Ready to go
    enhancement core high-priority 
    opened by orionarcher 7
  • Concatenation Issue for Residence Time Calculation

    Concatenation Issue for Residence Time Calculation

    I am using Residence.from_solute(solute) to calculate the residence time between trimers' N and water' O. It always reports the same concatenation issue which seems to be caused by the calculation of auto-covariance (Fig 1). However, when I calculate the residence time between anion and water, there isn't this problem. I add the solvation_data of anion solution (Fig 2) and trimer solution for your reference (Fig 3).

    Screen Shot 2022-12-05 at 15 58 01 Screen Shot 2022-12-05 at 15 58 21Fig 1 Screen Shot 2022-12-05 at 15 53 21 Fig 2

    Screen Shot 2022-12-05 at 15 52 53Fig 3

    opened by SophiaRuan 0
  • Styling and consistency of documentation could be improved

    Styling and consistency of documentation could be improved

    This is split off from PR #78 to address two points the consistency and formatting of the documentation.

    Todos:

    • [ ] closely read over all documentation for errors
    • [ ] make sure all syntax and code styling is consistent
    • [ ] enhance aesthetic styling of documentation
    documentation 
    opened by orionarcher 0
  • Work towards MDAKit integration

    Work towards MDAKit integration

    Now that MDAKits are live to roll we should work towards registering solvation-analysis as an MDAKit!

    See the blog post for more info.

    @orionarcher I would be interested to know if you would prefer to just go for it or wait for 0.2.0 (and some conda packages).

    AFAIK solvation-analysis already meets all the requirements listed in the white paper.

    opened by hmacdope 2
  • Solvation plots

    Solvation plots

    Description

    Provide a brief description of the PR's purpose here.

    Todos

    Notable points that this PR has either accomplished or will accomplish.

    • [ ] TODO 1

    Questions

    • [ ] Question1

    Status

    • [ ] Ready to go
    opened by laurlee 1
  • Create a `save_data` method for solution

    Create a `save_data` method for solution

    This method should dump the core solvation statistics to python dict. It will not contain enough information to reconstitute the Solution.

    Brought up in issue #52.

    opened by orionarcher 0
Releases(v0.1.4)
  • v0.1.4(Jun 28, 2022)

  • v0.1.3(Mar 17, 2022)

  • v0.1.2-beta(Sep 23, 2021)

    New functionality:

    • co-occurrence matrix calculation and plotting
    • identify types of coordinating atoms
    • find percentage of free solvent

    Bug fixes:

    • all AtomGroup.ids and ResidueGroup.resids changed to AtomGroup.ix and ResidueGroup.resindices
    Source code(tar.gz)
    Source code(zip)
  • v0.1.2(Sep 23, 2021)

    New functionality:

    • co-occurrence matrix calculation and plotting
    • identify types of coordinating atoms
    • find percentage of free solvent

    Bug fixes:

    • all AtomGroup.ids and ResidueGroup.resids changed to AtomGroup.ix and ResidueGroup.resindices
    Source code(tar.gz)
    Source code(zip)
  • v0.1.1-alpha(Aug 19, 2021)

  • v0.1.1(Aug 19, 2021)

Owner
MDAnalysis
MDAnalysis is an object-oriented Python library to analyze molecular dynamics trajectories.
MDAnalysis
A neural-based binary analysis tool

A neural-based binary analysis tool Introduction This directory contains the demo of a neural-based binary analysis tool. We test the framework using

Facebook Research 208 Dec 22, 2022
PyEmits, a python package for easy manipulation in time-series data.

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Thompson 5 Sep 23, 2022
BigDL - Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems

Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems.

Vo Cong Thanh 1 Jan 06, 2022
pyETT: Python library for Eleven VR Table Tennis data

pyETT: Python library for Eleven VR Table Tennis data Documentation Documentation for pyETT is located at https://pyett.readthedocs.io/. Installation

Tharsis Souza 5 Nov 19, 2022
Analyzing Covid-19 Outbreaks in Ontario

My group and I took Covid-19 outbreak statistics from ontario, and analyzed them to find different patterns and future predictions for the virus

Vishwaajeeth Kamalakkannan 0 Jan 20, 2022
Datashredder is a simple data corruption engine written in python. You can corrupt anything text, images and video.

Datashredder is a simple data corruption engine written in python. You can corrupt anything text, images and video. You can chose the cha

2 Jul 22, 2022
Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities. This is aimed at those looking to get into the field of D

Joachim 1 Dec 26, 2021
Using Python to derive insights on particular Pokemon, Types, Generations, and Stats

Pokémon Analysis Andreas Nikolaidis February 2022 Introduction Exploratory Analysis Correlations & Descriptive Statistics Principal Component Analysis

Andreas 1 Feb 18, 2022
Office365 (Microsoft365) audit log analysis tool

Office365 (Microsoft365) audit log analysis tool The header describes it all WHY?? The first line of code was written long time before other colleague

Anatoly 1 Jul 27, 2022
DefAP is a program developed to facilitate the exploration of a material's defect chemistry

DefAP is a program developed to facilitate the exploration of a material's defect chemistry. A large number of features are provided and rapid exploration is supported through the use of autoplotting

6 Oct 25, 2022
A notebook to analyze Amazon Recommendation Review Dataset.

Amazon Recommendation Review Dataset Analyzer A notebook to analyze Amazon Recommendation Review Dataset. Features Calculates distinct user count, dis

isleki 3 Aug 22, 2022
Implementation in Python of the reliability measures such as Omega.

OmegaPy Summary Simple implementation in Python of the reliability measures: Omega Total, Omega Hierarchical and Omega Hierarchical Total. Name Link O

Rafael Valero Fernández 2 Apr 27, 2022
Hue Editor: Open source SQL Query Assistant for Databases/Warehouses

Hue Editor: Open source SQL Query Assistant for Databases/Warehouses

Cloudera 759 Jan 07, 2023
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Jan 02, 2023
Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Damien Farrell 81 Dec 26, 2022
MeSH2Matrix - A set of Python codes for the generation of biomedical ontologies from the MeSH keywords of the PubMed scholarly publications

A set of Python codes for the generation of biomedical ontologies from the MeSH keywords of the PubMed scholarly publications

SisonkeBiotik 6 Nov 30, 2022
A pipeline that creates consensus sequences from a Nanopore reads. I

A pipeline that creates consensus sequences from a Nanopore reads. It clusters reads that are similar to each other and creates a consensus that is then identified using BLAST.

Ada Madejska 2 May 15, 2022
A variant of LinUCB bandit algorithm with local differential privacy guarantee

Contents LDP LinUCB Description Model Architecture Dataset Environment Requirements Script Description Script and Sample Code Script Parameters Launch

Weiran Huang 4 Oct 25, 2022
Tokyo 2020 Paralympics, Analytics

Tokyo 2020 Paralympics, Analytics Thanks for checking out my app! It was built entirely using matplotlib and Tokyo 2020 Paralympics data. This applica

Petro Ivaniuk 1 Nov 18, 2021