Code for paper "Multi-level Disentanglement Graph Neural Network"

Overview

Multi-level Disentanglement Graph Neural Network (MD-GNN)

This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

  • Datasets (Cora, Citeseer, Pubmed, Synthetic, and ZINC)

  • Training paradigm for node classification, graph classification, and graph regression tasks

  • Visualization

  • Evaluation metrics

Main Requirements

  • dgl==0.4.3.post2
  • networkx==2.4
  • numpy==1.18.1
  • ogb==1.1.1
  • scikit-learn==0.22.2.post1
  • scipy==1.4.1
  • torch==1.5.0

Description

  • train.py

    • main() -- Train a new model for node classification task on the Cora, Citeseer, and Pubmed datasets
    • evaluate() -- Test the learned model for node classification task on the Cora, Citeseer, and Pubmed datasets
    • main_synthetic() -- Train a new model for graph classification task on the Synthetic dataset
    • evaluate_synthetic() -- Test the learned model for graph classification task on the Synthetic dataset
    • main_zinc() -- Train a new model for graph regression task on the ZINC datasets
    • evaluate_zinc() -- Test the learned model for graph regression task on the ZINC datasets
  • dataset.py

    • load_data() -- Load data of selected dataset
  • MDGNN.py

    • MDGNN() -- model and loss
  • utils.py

    • evaluate_att() -- Evaluate attribute-level disentanglement with the visualization of relation-related attributes
    • evaluate_corr() -- Evaluate node-level disentanglement with the correlation analysis of latent features
    • evaluate_graph() -- Evaluate graph-level disentanglement with the visualization of disentangled relation graphs

Running the code

  1. Install the required dependency packages and unzip files in the data folder.

  2. We use DGL to implement all the GNN models on three citation datasets (Cora, Citeseer, and Pubmed). In order to evaluate the model with different splitting strategy (fewer and harder label rates), you need to replace the following file with the citation_graph.py provided.

dgl/data/citation_graph.py

  1. To get the results on a specific dataset, run with proper hyperparameters
python train.py --dataset data_name

where the data_name is one of the five datasets (cora, citeseer, pubmed, synthetic, and zinc). The model as well as the training log will be saved to the corresponding dir in ./log for evaluation.

  1. The evaluation the performance of three-level disentanglement performance, run
python utils.py

License

MD-GNN is released under the MIT license.

Owner
Lirong Wu
Ph.D. student on Graph.
Lirong Wu
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs

Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,

Pedro Mercado 6 May 26, 2022
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer

In the light of feature distributions: Moment matching for Neural Style Transfer (CVPR 2021) This repository provides code to recreate results present

Nikolai Kalischek 49 Oct 13, 2022
Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image

Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image (Project page) Zhengqin Li, Mohammad Sha

209 Jan 05, 2023
This repository contains the code for "Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP".

Self-Diagnosis and Self-Debiasing This repository contains the source code for Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based

Timo Schick 62 Dec 12, 2022
Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

arXiv, porject page, paper Blind Image Decomposition (BID) Blind Image Decomposition is a novel task. The task requires separating a superimposed imag

64 Dec 20, 2022
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
A deep-learning pipeline for segmentation of ambiguous microscopic images.

Welcome to Official repository of deepflash2 - a deep-learning pipeline for segmentation of ambiguous microscopic images. Quick Start in 30 seconds se

Matthias Griebel 39 Dec 19, 2022
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN If you use this code for your research, please cite ou

41 Dec 08, 2022
BC3407-Group-5-Project - BC3407 Group Project With Python

BC3407-Group-5-Project As the world struggles to contain the ever-changing varia

1 Jan 26, 2022
This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning

Deep learning for Earth Observation This repository contains code, network definitions and pre-trained models for working on remote sensing images usi

Nicolas Audebert 447 Jan 05, 2023
Categorical Depth Distribution Network for Monocular 3D Object Detection

CaDDN CaDDN is a monocular-based 3D object detection method. This repository is based off of [OpenPCDet]. Categorical Depth Distribution Network for M

Toronto Robotics and AI Laboratory 289 Jan 05, 2023
Software & Hardware to do multi color printing with Sharpies

3D Print Colorizer is a combination of 3D printed parts and a Cura plugin which allows anyone with an Ender 3 like 3D printer to produce multi colored

343 Jan 06, 2023
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations This repo contains official code for the NeurIPS 2021 paper Imi

Jiayao Zhang 2 Oct 18, 2021
One Million Scenes for Autonomous Driving

ONCE Benchmark This is a reproduced benchmark for 3D object detection on the ONCE (One Million Scenes) dataset. The code is mainly based on OpenPCDet.

148 Dec 28, 2022
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Ken Lin 17 Oct 12, 2022
Semi-Supervised Learning with Ladder Networks in Keras. Get 98% test accuracy on MNIST with just 100 labeled examples !

Semi-Supervised Learning with Ladder Networks in Keras This is an implementation of Ladder Network in Keras. Ladder network is a model for semi-superv

Divam Gupta 101 Sep 07, 2022
Scikit-event-correlation - Event Correlation and Forecasting over High Dimensional Streaming Sensor Data algorithms

scikit-event-correlation Event Correlation and Changing Detection Algorithm Theo

Intellia ICT 5 Oct 30, 2022
Code accompanying the NeurIPS 2021 paper "Generating High-Quality Explanations for Navigation in Partially-Revealed Environments"

Generating High-Quality Explanations for Navigation in Partially-Revealed Environments This work presents an approach to explainable navigation under

RAIL Group @ George Mason University 1 Oct 28, 2022