DaCy: The State of the Art Danish NLP pipeline using SpaCy

Overview

DaCy: A SpaCy NLP Pipeline for Danish

release version versions python versions python versions Code style: flake8

DaCy is a Danish preprocessing pipeline trained in SpaCy. At the time of writing it has achieved State-of-the-Art performance on all Benchmark tasks for Danish. This repository contains code for reproducing DaCy. To download the models use the DaNLP package (request pending), SpaCy (request pending) or downloading the project directly here.

Reproduction

the folder DaCy contains a SpaCy project which will allow for a reproduction of the results. This folder also includes the evaluation metrics on DaNE.

Usage

To load in the project using the direct download simple place the downloaded "packages" folder in your directory load the model using SpaCy:

import spacy
nlp = spacy.load("da_dacy_large_tft-0.0.0")

More explicitly from the unpacked folder it is:

nlp = spacy.load("da_dacy_large_tft-0.0.0/da_dacy_large_tft/da_dacy_large_tft-0.0.0")

Thus if you get an error you might be loading from the outer folder called da_dacy_large_tft-0.0.0 rather than the inner.

To obtains SOTA performance in lemmatization as well you should add this lemmatization pipeline as well:

import lemmy.pipe

pipe = lemmy.pipe.load('da')

# Add the component to the spaCy pipeline.
nlp.add_pipe(pipe, after='tagger')

# Lemmas can now be accessed using the `._.lemmas` attribute on the tokens.
nlp("akvariernes")[0]._.lemmas

This requires you install the package beforehand, this is done easily using:

pip install lemmy

Performance and Training

The following table show the performance on DaNE when compared to other models. Highest scores are highlighted with bold and second highest is underlined

Want to learn more about how the model was trained, check out this blog post.

Issues and Usage Q&A

To ask questions, report issues or request features 🤔 , please use the GitHub Issue Tracker. Question related to SpaCy is referred to the SpaCy GitHub or forum.

Acknowledgements

This is really an acknowledgement of great open-source software and contributors. This wouldn't have been possible with the work by the SpaCy team which developed an integrated the software. Huggingface for developing Transformers and making model sharing convenient. BotXO for training and sharing the Danish BERT model and Malte Bertelsen for making it easily available. DaNLP has made it extremely easy to get access to Danish resources to train on and even supplied some of the tagged data themselves and does a great job of actually developing these datasets.

References

If you use this library in your research, please kindly cite:

@inproceedings{enevoldsen2020dacy,
    title={DaCy: A SpaCy NLP Pipeline for Danish},
    author={Enevoldsen, Kenneth},
    year={2021}
}

LICENSE

DaCy is released under the Apache License, Version 2.0. See the LICENSE file for more details.

Comments
  • Make cache dir configurable

    Make cache dir configurable

    I would like to make the default cache dir configurable with an environmental variable. This is a simple PR to allow one to do that with the variable DACY_CACHE_DIR.

    opened by dhpollack 9
  • Remove protobuf dependency

    Remove protobuf dependency

    dacy has a very tight version bound on some auxiliary libraries like protobuf. It's not apparent why this is required as it does not appear to be a library used internally, but it could of course be intentional. But the version is lagging enough that it is starting to cause compatibility problems with other libraries, so if it can be relaxed that would be very helpful.

    enhancement 
    opened by Bonnevie 4
  • Add Tutorials:

    Add Tutorials: "Extracting text statistics and readability metrics using DaCy and Textdescriptives"

    After removing readability it would be nice with a tutorial on: "Extracting text statistics and readability metrics using DaCy and Textdescriptives"

    Potentially using the packages to describe the examining the language complexity between conversational data and legal documents on DAGW or a similar task using a publicly available dataset.

    enhancement 
    opened by KennethEnevoldsen 4
  • loosen requirements

    loosen requirements

    The requirements of this package are unnecessarily strict. Specifically, I am having issues with tqdm. I have a more in-depth explaination in the issue that I create centre-for-humanities-computing/DaCy#75. There are also a few optimizations to your setup.py file. I notice that the requirements.txt file is not used, which could cause a mismatch when doing pip install -r requirements.txt and pip install .

    opened by dhpollack 4
  • ContextualVersionConflict Traceback (most recent call last)

    ContextualVersionConflict Traceback (most recent call last)

    Moved from #133, originally posted by @EaLindhardt

    I've tried to download dacy through anaconda, both with pip and conda install and the different ways of installing: https://centre-for-humanities-computing.github.io/DaCy/installation.html

    when running

    import dacy

    i get the following

    `--------------------------------------------------------------------------- ContextualVersionConflict Traceback (most recent call last) Input In [14], in <cell line: 1>() ----> 1 import dacy

    File ~\AppData\Roaming\Python\Python39\site-packages\dacy_init_.py:4, in 1 from dacy.hate_speech import make_offensive_transformer # noqa 2 from dacy.sentiment import make_emotion_transformer # noqa ----> 4 from .about import download_url, title, version # noqa 5 from .download import download_model # noqa 6 from .load import load, models, where_is_my_dacy

    File ~\AppData\Roaming\Python\Python39\site-packages\dacy\about.py:3, in 1 import pkg_resources ----> 3 version = pkg_resources.get_distribution("dacy").version 4 title = "dacy" 5 download_url = "https://github.com/centre-for-humanities-computing/DaCy"

    File ~\Anaconda3\lib\site-packages\pkg_resources_init_.py:477, in get_distribution(dist) 475 dist = Requirement.parse(dist) 476 if isinstance(dist, Requirement): --> 477 dist = get_provider(dist) 478 if not isinstance(dist, Distribution): 479 raise TypeError("Expected string, Requirement, or Distribution", dist)

    File ~\Anaconda3\lib\site-packages\pkg_resources_init_.py:353, in get_provider(moduleOrReq) 351 """Return an IResourceProvider for the named module or requirement""" 352 if isinstance(moduleOrReq, Requirement): --> 353 return working_set.find(moduleOrReq) or require(str(moduleOrReq))[0] 354 try: 355 module = sys.modules[moduleOrReq]

    File ~\Anaconda3\lib\site-packages\pkg_resources_init_.py:897, in WorkingSet.require(self, *requirements) 888 def require(self, *requirements): 889 """Ensure that distributions matching requirements are activated 890 891 requirements must be a string or a (possibly-nested) sequence (...) 895 included, even if they were already activated in this working set. 896 """ --> 897 needed = self.resolve(parse_requirements(requirements)) 899 for dist in needed: 900 self.add(dist)

    File ~\Anaconda3\lib\site-packages\pkg_resources_init_.py:788, in WorkingSet.resolve(self, requirements, env, installer, replace_conflicting, extras) 785 if dist not in req: 786 # Oops, the "best" so far conflicts with a dependency 787 dependent_req = required_by[req] --> 788 raise VersionConflict(dist, req).with_context(dependent_req) 790 # push the new requirements onto the stack 791 new_requirements = dist.requires(req.extras)[::-1]

    ContextualVersionConflict: (spacy 3.3.1 (c:\users\au576018\anaconda3\lib\site-packages), Requirement.parse('spacy<3.3.0,>=3.2.0'), {'dacy'})`

    How do I solve this?

    @EaLindhardt will you please add the following information:

    • DaCy Version Used:
    • Operating System:
    • Python Version Used:
    • spaCy Version Used:
    • Environment Information:

    you can also type python -m spacy info --markdown and copy-paste the result here along with the DaCy version, which you can get using python -c "import dacy; print(dacy.__version__)"

    bug Stale 
    opened by KennethEnevoldsen 3
  • Update WandbLogger in configs to v2

    Update WandbLogger in configs to v2

    Update WandbLogger in configs to v2. This version has the same experiment tracking features as v1 but also has model checkpointing and dataset versioning possibilities.

    opened by scottire 3
  • Augmentation

    Augmentation

    • [x] Entity augmentation
      • [x] Gender augmentation (awareness of gender)
      • [x] Second order person augmentation (Lastname, Firstname)
      • [ ] Usernames (autogenerates e.g. WhiteTruffle101 or Kenneth Enevoldsen -> KennethEnevoldsen)
    • [ ] Mispellings Augmentations, se e.g. this repo
      • [x] Keystroke error based on keyboard distance
    • [ ] Historic augmentations
      • [x]   æ->ae, å -> aa (and a), ø->oe
      • [ ] uppercasing of nouns
    • [ ] Social media
      • [ ] Adding hashtags augmentation
    • [ ] Others, potentially see this tweet or this kaggle summary
    enhancement 
    opened by KennethEnevoldsen 3
  • :arrow_up: Update sphinxext-opengraph requirement from <0.7.0,>=0.6.3 to >=0.6.3,<0.8.0

    :arrow_up: Update sphinxext-opengraph requirement from <0.7.0,>=0.6.3 to >=0.6.3,<0.8.0

    Updates the requirements on sphinxext-opengraph to permit the latest version.

    Release notes

    Sourced from sphinxext-opengraph's releases.

    v0.7.4

    What's Changed

    New Contributors

    Full Changelog: https://github.com/wpilibsuite/sphinxext-opengraph/compare/v0.7.3...v0.7.4

    Commits

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    dependencies python 
    opened by dependabot[bot] 2
  • :arrow_up: Bump schneegans/dynamic-badges-action from 1.2.0 to 1.3.0

    :arrow_up: Bump schneegans/dynamic-badges-action from 1.2.0 to 1.3.0

    Bumps schneegans/dynamic-badges-action from 1.2.0 to 1.3.0.

    Release notes

    Sourced from schneegans/dynamic-badges-action's releases.

    Dynamic Badges v1.3.0

    This release adds the possibility to auto-generate the badge color. You can read the full changelog.

    Changelog

    Sourced from schneegans/dynamic-badges-action's changelog.

    Dynamic Badges Action 1.3.0

    Release Date: 2022-04-18

    Changes

    • Added the possibility to generate the badge color automatically between red and green based on a numerical value and its bounds. Thanks to @​LucasWolfgang for this contribution!
    Commits
    • a6775a6 :memo: Add changelog entry
    • 7ce4e74 :wrench: USe color range for example badge
    • a3f7e7f :memo: Improve documentation
    • 6511e52 :memo: Tweak documentation
    • e43bdee :sparkles: Tweak formatting of the code
    • 3dd7c22 :sparkles: Apply clang-format
    • ee32073 :wrench: Fix typo
    • 9bce11b :Thanks again! : Merge pull request #11 from LucasWolfgang/master
    • 53c821a :tada: Added saturation and lightness parameters
    • 6363528 :tada: Added saturation and lightness parameters
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    dependencies github_actions 
    opened by dependabot[bot] 2
  • Address cuda warnings and spaCy version warning.

    Address cuda warnings and spaCy version warning.

    When running:

    import dacy
    
    for model in dacy.models():
        print(model)
    
    dacy_nlp = dacy.load('medium')
    
    doc = dacy_nlp("DaCy er en hurtig og effektiv pipeline til dansk sprogprocessering bygget i SpaCy.")
    
    print('hej')
    

    I get the following warning:

    
    da_dacy_small_tft-0.0.0
    da_dacy_medium_tft-0.0.0
    da_dacy_large_tft-0.0.0
    da_dacy_small_trf-0.1.0
    da_dacy_medium_trf-0.1.0
    da_dacy_large_trf-0.1.0
    /venv/lib/python3.9/site-packages/spacy/util.py:833: UserWarning: [W095] Model 'da_dacy_medium_trf' (0.1.0) was trained with spaCy v3.1 and may not be 100% compatible with the current version (3.2.4). If you see errors or degraded performance, download a newer compatible model or retrain your custom model with the current spaCy version. For more details and available updates, run: python -m spacy validate
      warnings.warn(warn_msg)
    /venv/lib/python3.9/site-packages/spacy/util.py:833: UserWarning: [W095] Model 'da_dacy_small_trf' (0.1.0) was trained with spaCy v3.1 and may not be 100% compatible with the current version (3.2.4). If you see errors or degraded performance, download a newer compatible model or retrain your custom model with the current spaCy version. For more details and available updates, run: python -m spacy validate
      warnings.warn(warn_msg)
    /venv/lib/python3.9/site-packages/spacy_transformers/pipeline_component.py:406: UserWarning: Automatically converting a transformer component from spacy-transformers v1.0 to v1.1+. If you see errors or degraded performance, download a newer compatible model or retrain your custom model with the current spacy-transformers version. For more details and available updates, run: python -m spacy validate
      warnings.warn(warn_msg)
    /venv/lib/python3.9/site-packages/torch/amp/autocast_mode.py:198: UserWarning: User provided device_type of 'cuda', but CUDA is not available. Disabling
      warnings.warn('User provided device_type of \'cuda\', but CUDA is not available. Disabling')
    /venv/lib/python3.9/site-packages/spacy/pipeline/attributeruler.py:150: UserWarning: [W036] The component 'matcher' does not have any patterns defined.
      matches = self.matcher(doc, allow_missing=True, as_spans=False)
    hej
    

    Notably this this includes three warning, including SpaCy version, cuda device and matcher object (see also #72)

    originally version sent to me by mail

    Note: While this is a warning there, DaCy still works as intended. The version of spaCy does not influence model performance.

    opened by KennethEnevoldsen 2
Releases(v2.3.1)
Owner
Kenneth Enevoldsen
Student and Instructor at Cognitive Science Aarhus University Student Programmer at CHCAA, Junior Waste management consultant at JHN Processor
Kenneth Enevoldsen
Chinese Named Entity Recognization (BiLSTM with PyTorch)

BiLSTM-CRF for Name Entity Recognition PyTorch version A PyTorch implemention of Bi-LSTM-CRF model for Chinese Named Entity Recognition. 使用 PyTorch 实现

5 Jun 01, 2022
An Explainable Leaderboard for NLP

ExplainaBoard: An Explainable Leaderboard for NLP Introduction | Website | Download | Backend | Paper | Video | Bib Introduction ExplainaBoard is an i

NeuLab 319 Dec 20, 2022
Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS)

This repository is an implementation of Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS) with a vocoder that works in real-time. Feel free to check my the

Corentin Jemine 38.5k Jan 03, 2023
Translation to python of Chris Sims' optimization function

pycsminwel This is a locol minimization algorithm. Uses a quasi-Newton method with BFGS update of the estimated inverse hessian. It is robust against

Gustavo Amarante 1 Mar 21, 2022
PIZZA - a task-oriented semantic parsing dataset

The PIZZA dataset continues the exploration of task-oriented parsing by introducing a new dataset for parsing pizza and drink orders, whose semantics cannot be captured by flat slots and intents.

17 Dec 14, 2022
This project converts your human voice input to its text transcript and to an automated voice too.

Human Voice to Automated Voice & Text Introduction: In this project, whenever you'll speak, it will turn your voice into a robot voice and furthermore

Hassan Shahzad 3 Oct 15, 2021
A full spaCy pipeline and models for scientific/biomedical documents.

This repository contains custom pipes and models related to using spaCy for scientific documents. In particular, there is a custom tokenizer that adds

AI2 1.3k Jan 03, 2023
Trankit is a Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing

Trankit: A Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing Trankit is a light-weight Transformer-based Pyth

652 Jan 06, 2023
Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

Francis R. Willett 305 Dec 22, 2022
p-tuning for few-shot NLU task

p-tuning_NLU Overview 这个小项目是受乐于分享的苏剑林大佬这篇p-tuning 文章启发,也实现了个使用P-tuning进行NLU分类的任务, 思路是一样的,prompt实现方式有不同,这里是将[unused*]的embeddings参数抽取出用于初始化prompt_embed后

3 Dec 29, 2022
C.J. Hutto 3.8k Dec 30, 2022
Rhyme with AI

Local development Create a conda virtual environment and activate it: conda env create --file environment.yml conda activate rhyme-with-ai Install the

GoDataDriven 28 Nov 21, 2022
Phomber is infomation grathering tool that reverse search phone numbers and get their details, written in python3.

A Infomation Grathering tool that reverse search phone numbers and get their details ! What is phomber? Phomber is one of the best tools available fo

S41R4J 121 Dec 27, 2022
A Lightweight NLP Data Loader for All Deep Learning Frameworks in Python

LineFlow: Framework-Agnostic NLP Data Loader in Python LineFlow is a simple text dataset loader for NLP deep learning tasks. LineFlow was designed to

TofuNLP 177 Jan 04, 2023
The first online catalogue for Arabic NLP datasets.

Masader The first online catalogue for Arabic NLP datasets. This catalogue contains 200 datasets with more than 25 metadata annotations for each datas

ARBML 94 Dec 26, 2022
Residual2Vec: Debiasing graph embedding using random graphs

Residual2Vec: Debiasing graph embedding using random graphs This repository contains the code for S. Kojaku, J. Yoon, I. Constantino, and Y.-Y. Ahn, R

SADAMORI KOJAKU 5 Oct 12, 2022
NLP Overview

NLP-Overview Introduction The field of NPL encompasses a variety of topics which involve the computational processing and understanding of human langu

PeterPham 1 Jan 13, 2022
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022
A Python module made to simplify the usage of Text To Speech and Speech Recognition.

Nav Module The solution for voice related stuff in Python Nav is a Python module which simplifies voice related stuff in Python. Just import the Modul

Snm Logic 1 Dec 20, 2021
Ray-based parallel data preprocessing for NLP and ML.

Wrangl Ray-based parallel data preprocessing for NLP and ML. pip install wrangl # for latest pip install git+https://github.com/vzhong/wrangl See exa

Victor Zhong 33 Dec 27, 2022