Associated Repository for "Translation between Molecules and Natural Language"

Related tags

Text Data & NLPMolT5
Overview

MolT5: Translation between Molecules and Natural Language

Associated repository for "Translation between Molecules and Natural Language".

Table of Contents

HuggingFace model checkpoints

All of our HuggingFace checkpoints are located here.

Pretrained MolT5-based checkpoints include:

You can also easily find our fine-tuned caption2smiles and smiles2caption models. For example, molt5-large-smiles2caption is a molt5-large model that has been further fine-tuned for the task of molecule captioning (i.e., smiles2caption).

Example usage for molecule captioning (i.e., smiles2caption):

from transformers import T5Tokenizer, T5ForConditionalGeneration

tokenizer = T5Tokenizer.from_pretrained("laituan245/molt5-large-smiles2caption", model_max_length=512)
model = T5ForConditionalGeneration.from_pretrained('laituan245/molt5-large-smiles2caption')

input_text = 'C1=CC2=C(C(=C1)[O-])NC(=CC2=O)C(=O)O'
input_ids = tokenizer(input_text, return_tensors="pt").input_ids

outputs = model.generate(input_ids, num_beams=5, max_length=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Example usage for molecule generation (i.e., caption2smiles):

from transformers import T5Tokenizer, T5ForConditionalGeneration

tokenizer = T5Tokenizer.from_pretrained("laituan245/molt5-large-caption2smiles", model_max_length=512)
model = T5ForConditionalGeneration.from_pretrained('laituan245/molt5-large-caption2smiles')

input_text = 'The molecule is a monomethoxybenzene that is 2-methoxyphenol substituted by a hydroxymethyl group at position 4. It has a role as a plant metabolite. It is a member of guaiacols and a member of benzyl alcohols.'
input_ids = tokenizer(input_text, return_tensors="pt").input_ids

outputs = model.generate(input_ids, num_beams=5, max_length=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

T5X-based model checkpoints

Pretraining (MolT5-based models)

We used the open-sourced t5x framework for pretraining MolT5-based models.

For pre-training MolT5-based models, please first go over this document. In our work, our pretraining task is a mixture of c4_v220_span_corruption and also our own task called zinc_span_corruption. The pretraining mixture is called zinc_and_c4_mix. The code snippet below illustrates how to define zinc_and_c4_mix (e.g., you can just add this code snippet to tasks.py). Our Gin config files for pretraining are located in configs/pretrain. Data files can be downloaded from here.

...
import tensorflow.compat.v2 as tf
...
seqio.TaskRegistry.add(
    'zinc_span_corruption',
    source=seqio.TFExampleDataSource(
        split_to_filepattern={
            'test': # Path to zinc_smiles_test.tfrecords,
            'validation': # Path to zinc_smiles_val.tfrecords,
            'train': # Path to zinc_smiles_train.tfrecords,
        },
        feature_description={
            'text': tf.io.FixedLenFeature([], dtype=tf.string),
        }),
    preprocessors=[
        functools.partial(
            preprocessors.rekey, key_map={
                'inputs': None,
                'targets': 'text'
            }),
        seqio.preprocessors.tokenize,
        preprocessors.span_corruption,
        seqio.preprocessors.append_eos_after_trim,
    ],
    output_features=DEFAULT_OUTPUT_FEATURES,
    metric_fns=[])

seqio.MixtureRegistry.add('zinc_and_c4_mix', [('zinc_span_corruption', 1),
                                              ('c4_v220_span_corruption', 1)])
)

Finetuning (MolT5-based models)

We also used the t5x framework for finetuning MolT5-based models. Please first go over this document. Our Gin config files for finetuning are located in configs/finetune. For each of the Gin file, you need to set the INITIAL_CHECKPOINT_PATH variables (please use one of the checkpoints mentioned in this section). Note that there are two new tasks, which are named caption2smiles and smiles2caption. The code snippet below illustrates how to define the tasks. Data files can be downloaded from here.

...
# Metrics
_TASK_EVAL_METRICS_FNS = [
    metrics.bleu,
    metrics.rouge,
    metrics.sequence_accuracy
]

# Data Source
DATA_SOURCE = seqio.TFExampleDataSource(
    split_to_filepattern={
        'train': # Path to chebi_20_train.tfrecords,
        'validation': # Path to chebi_20_dev.tfrecords,
        'test': # Path to chebi_20_test.tfrecords
    },
    feature_description={
        'caption': tf.io.FixedLenFeature([], dtype=tf.string),
        'smiles': tf.io.FixedLenFeature([], dtype=tf.string),
        'cid': tf.io.FixedLenFeature([], dtype=tf.string),
    }
)

# Molecular Captioning (smiles2caption)
seqio.TaskRegistry.add(
    'smiles2caption',
    source=DATA_SOURCE,
    preprocessors=[
        functools.partial(
            preprocessors.rekey,
            key_map={
                'inputs': 'smiles',
                'targets': 'caption'
            }),
        seqio.preprocessors.tokenize,
        seqio.preprocessors.append_eos_after_trim,
    ],
    output_features=DEFAULT_OUTPUT_FEATURES,
    metric_fns=_TASK_EVAL_METRICS_FNS,
)

# Molecular Captioning (caption2smiles)
seqio.TaskRegistry.add(
    'caption2smiles',
    source=DATA_SOURCE,
    preprocessors=[
        functools.partial(
            preprocessors.rekey,
            key_map={
                'inputs': 'caption',
                'targets': 'smiles'
            }),
        seqio.preprocessors.tokenize,
        seqio.preprocessors.append_eos_after_trim,
    ],
    output_features=DEFAULT_OUTPUT_FEATURES,
    metric_fns=_TASK_EVAL_METRICS_FNS,
)

Datasets

Citation

If you found our work useful, please cite:

@article{edwards2022translation,
  title={Translation between Molecules and Natural Language},
  author={Edwards, Carl and Lai, Tuan and Ros, Kevin and Honke, Garrett and Ji, Heng},
  journal={arXiv preprint arXiv:2204.11817},
  year={2022}
}
MRC approach for Aspect-based Sentiment Analysis (ABSA)

B-MRC MRC approach for Aspect-based Sentiment Analysis (ABSA) Paper: Bidirectional Machine Reading Comprehension for Aspect Sentiment Triplet Extracti

Phuc Phan 1 Apr 05, 2022
One Stop Anomaly Shop: Anomaly detection using two-phase approach: (a) pre-labeling using statistics, Natural Language Processing and static rules; (b) anomaly scoring using supervised and unsupervised machine learning.

One Stop Anomaly Shop (OSAS) Quick start guide Step 1: Get/build the docker image Option 1: Use precompiled image (might not reflect latest changes):

Adobe, Inc. 148 Dec 26, 2022
Optimal Transport Tools (OTT), A toolbox for all things Wasserstein.

Optimal Transport Tools (OTT), A toolbox for all things Wasserstein. See full documentation for detailed info on the toolbox. The goal of OTT is to pr

OTT-JAX 255 Dec 26, 2022
Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

18 Nov 28, 2022
API for the GPT-J language model 🦜. Including a FastAPI backend and a streamlit frontend

gpt-j-api 🦜 An API to interact with the GPT-J language model. You can use and test the model in two different ways: Streamlit web app at http://api.v

Víctor Gallego 276 Dec 31, 2022
Code of paper: A Recurrent Vision-and-Language BERT for Navigation

Recurrent VLN-BERT Code of the Recurrent-VLN-BERT paper: A Recurrent Vision-and-Language BERT for Navigation Yicong Hong, Qi Wu, Yuankai Qi, Cristian

YicongHong 109 Dec 21, 2022
A Python module made to simplify the usage of Text To Speech and Speech Recognition.

Nav Module The solution for voice related stuff in Python Nav is a Python module which simplifies voice related stuff in Python. Just import the Modul

Snm Logic 1 Dec 20, 2021
:id: A python library for accurate and scalable fuzzy matching, record deduplication and entity-resolution.

Dedupe Python Library dedupe is a python library that uses machine learning to perform fuzzy matching, deduplication and entity resolution quickly on

Dedupe.io 3.6k Jan 02, 2023
Text Normalization(文本正则化)

Text Normalization(文本正则化) 任务描述:通过机器学习算法将英文文本的“手写”形式转换成“口语“形式,例如“6ft”转换成“six feet”等 实验结果 XGBoost + bag-of-words: 0.99159 XGBoost+Weights+rules:0.99002

Jason_Zhang 0 Feb 26, 2022
This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text.

Text Summarizer This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text. Team Members This mini-project was

1 Nov 16, 2021
CCQA A New Web-Scale Question Answering Dataset for Model Pre-Training

CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training This is the official repository for the code and models of the paper CCQA: A N

Meta Research 29 Nov 30, 2022
Vad-sli-asr - A Python scripts for a speech processing pipeline with Voice Activity Detection (VAD)

VAD-SLI-ASR Python scripts for a speech processing pipeline with Voice Activity

Dynamics of Language 14 Dec 09, 2022
KoBART model on huggingface transformers

KoBART-Transformers SKT에서 공개한 KoBART를 편리하게 사용할 수 있게 transformers로 포팅하였습니다. Install (Optional) BartModel과 PreTrainedTokenizerFast를 이용하면 설치하실 필요 없습니다. p

Hyunwoong Ko 58 Dec 07, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
Part of Speech Tagging using Hidden Markov Model (HMM) POS Tagger and Brill Tagger

Part of Speech Tagging using Hidden Markov Model (HMM) POS Tagger and Brill Tagger In this project, our aim is to tune, compare, and contrast the perf

Chirag Daryani 0 Dec 25, 2021
Let Xiao Ai speakers control third-party devices

A stupid way to extend miot/xiaoai. Demo for Panasonic Bath Bully FV-RB20VL1 逆向 Panasonic Smart China,获得控制浴霸的请求信息(HTTP 请求),详见 apps/panasonic.py; 2. 通过

bin 14 Jul 07, 2022
Easy, fast, effective, and automatic g-code compression!

Getting to the meat of g-code. Easy, fast, effective, and automatic g-code compression! MeatPack nearly doubles the effective data rate of a standard

Scott Mudge 97 Nov 21, 2022
[ICLR 2021 Spotlight] Pytorch implementation for "Long-tailed Recognition by Routing Diverse Distribution-Aware Experts."

RIDE: Long-tailed Recognition by Routing Diverse Distribution-Aware Experts. by Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu and Stella X. Yu at UC

Xudong (Frank) Wang 205 Dec 16, 2022
PyTorch Implementation of the paper Single Image Texture Translation for Data Augmentation

SITT The repo contains official PyTorch Implementation of the paper Single Image Texture Translation for Data Augmentation. Authors: Boyi Li Yin Cui T

Boyi Li 52 Jan 05, 2023
🗣️ NALP is a library that covers Natural Adversarial Language Processing.

NALP: Natural Adversarial Language Processing Welcome to NALP. Have you ever wanted to create natural text from raw sources? If yes, NALP is for you!

Gustavo Rosa 21 Aug 12, 2022