๐Ÿงฎ Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model after All

Overview

LDA4Rec

Project generated with PyScaffold

Accompanying source code to the paper "Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model After All" by Florian Wilhelm. The preprint can be found here along with the following statement:

"ยฉ Florian Wilhelm 2021. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive version was published in RecSys '21: Fifteenth ACM Conference on Recommender Systems Proceedings, https://doi.org/10.1145/3460231.3474266."

Installation

In order to set up the necessary environment:

  1. review and uncomment what you need in environment.yml and create an environment lda4rec with the help of conda:
    conda env create -f environment.yml
    
  2. activate the new environment with:
    conda activate lda4rec
    
  3. (optionally) get a free neptune.ai account for experiment tracking and save the api token under ~/.neptune_api_token (default).

Running Experiments

First check out and adapt the default experiment config configs/default.yaml and run it with:

lda4rec -c configs/default.yaml run

A config like configs/default.yaml can also be used as a template to create an experiment set with:

lda4rec -c configs/default.yaml create -ds movielens-100k

using the Movielens-100k dataset. Check out cli.py for more details.

Cloud Setup

Commands for setting up an Ubuntu 20.10 VM with at least 20 GiB of HD on e.g. a GCP c2-standard-30 instance:

tmux
sudo apt-get install -y build-essential
curl https://sh.rustup.rs -sSf | sh
source $HOME/.cargo/env
cargo install pueue
curl https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O
sh Miniconda3-latest-Linux-x86_64.sh
source ~/.bashrc
git clone https://github.com/FlorianWilhelm/lda4rec.git
cd lda4rec
conda env create -f environment.yml
conda activate lda4rec
vim ~/.neptune_api_token # and copy it over

Then create and run all experiments for full control over parallelism with pueue:

pueued -d # only once to start the daemon
pueue parallel 10
export OMP_NUM_THREADS=4  # to limit then number of threads per model
lda4rec -c configs/default.yaml create # to create the config files
find ./configs -maxdepth 1 -name "exp_*.yaml" -exec pueue add "lda4rec -c {} run" \; -exec sleep 30 \;

Remark: -exec sleep 30 avoids race condition when reading datasets if parallelism is too high.

Dependency Management & Reproducibility

  1. Always keep your abstract (unpinned) dependencies updated in environment.yml and eventually in setup.cfg if you want to ship and install your package via pip later on.
  2. Create concrete dependencies as environment.lock.yml for the exact reproduction of your environment with:
    conda env export -n lda4rec -f environment.lock.yml
    For multi-OS development, consider using --no-builds during the export.
  3. Update your current environment with respect to a new environment.lock.yml using:
    conda env update -f environment.lock.yml --prune

Project Organization

โ”œโ”€โ”€ AUTHORS.md              <- List of developers and maintainers.
โ”œโ”€โ”€ CHANGELOG.md            <- Changelog to keep track of new features and fixes.
โ”œโ”€โ”€ LICENSE.txt             <- License as chosen on the command-line.
โ”œโ”€โ”€ README.md               <- The top-level README for developers.
โ”œโ”€โ”€ configs                 <- Directory for configurations of model & application.
โ”œโ”€โ”€ data                    <- Downloaded datasets will be stored here.
โ”œโ”€โ”€ docs                    <- Directory for Sphinx documentation in rst or md.
โ”œโ”€โ”€ environment.yml         <- The conda environment file for reproducibility.
โ”œโ”€โ”€ notebooks               <- Jupyter notebooks. Naming convention is a number (for
โ”‚                              ordering), the creator's initials and a description,
โ”‚                              e.g. `1.0-fw-initial-data-exploration`.
โ”œโ”€โ”€ logs                    <- Generated logs are collected here.
โ”œโ”€โ”€ results                 <- Results as exported from neptune.ai.
โ”œโ”€โ”€ setup.cfg               <- Declarative configuration of your project.
โ”œโ”€โ”€ setup.py                <- Use `python setup.py develop` to install for development or
โ”‚                              or create a distribution with `python setup.py bdist_wheel`.
โ”œโ”€โ”€ src
โ”‚   โ””โ”€โ”€ lda4rec             <- Actual Python package where the main functionality goes.
โ”œโ”€โ”€ tests                   <- Unit tests which can be run with `py.test`.
โ”œโ”€โ”€ .coveragerc             <- Configuration for coverage reports of unit tests.
โ”œโ”€โ”€ .isort.cfg              <- Configuration for git hook that sorts imports.
โ””โ”€โ”€ .pre-commit-config.yaml <- Configuration of pre-commit git hooks.

How to Cite

Please cite LDA4Rec if it helps your research. You can use the following BibTeX entry:

@inproceedings{wilhelm2021lda4rec,
author = {Wilhelm, Florian},
title = {Matrix Factorization for Collaborative Filtering Is Just Solving an Adjoint Latent Dirichlet Allocation Model After All},
year = {2021},
month = sep,
isbn = {978-1-4503-8458-2/21/09},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3460231.3474266},
doi = {10.1145/3460231.3474266},
booktitle = {Fifteenth ACM Conference on Recommender Systems},
numpages = {8},
location = {Amsterdam, Netherlands},
series = {RecSys '21}
}

License

This sourcecode is AGPL-3-only licensed. If you require a more permissive licence, e.g. for commercial reasons, contact me to obtain a licence for your business.

Acknowledgement

Special thanks goes to Du Phan and Fritz Obermeyer from the (Num)Pyro project for their kind help and helpful comments on my code.

Note

This project has been set up using PyScaffold 4.0 and the dsproject extension 0.6. Some source code was taken from Spotlight (MIT-licensed) by Maciej Kula as well as lrann (MIT-licensed) by Florian Wilhelm and Marcel Kurovski.

Owner
Florian Wilhelm
Data Scientist with a mathematical background.
Florian Wilhelm
Loopy belief propagation for factor graphs on discrete variables, in JAX!

PGMax implements general factor graphs for discrete probabilistic graphical models (PGMs), and hardware-accelerated differentiable loopy belief propagation (LBP) in JAX.

Vicarious 62 Dec 23, 2022
Funnels: Exact maximum likelihood with dimensionality reduction.

Funnels This repository contains the code needed to reproduce the experiments from the paper: Funnels: Exact maximum likelihood with dimensionality re

2 Apr 21, 2022
ใ€CVPR 2021, Variational Inference Framework, PyTorchใ€‘ From Rain Generation to Rain Removal

From Rain Generation to Rain Removal (CVPR2021) Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng [PDF&&Supplementary Material]

Hong Wang 48 Nov 23, 2022
UMich 500-Level Mobile Robotics Course

MOBILE ROBOTICS: METHODS & ALGORITHMS - WINTER 2022 University of Michigan - NA 568/EECS 568/ROB 530 For slides, lecture notes, and example codes, see

393 Dec 29, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Ibai Gorordo 35 Sep 07, 2022
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Mayur 119 Nov 24, 2022
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022
Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Bowen XU 11 Dec 20, 2022
The Turing Change Point Detection Benchmark: An Extensive Benchmark Evaluation of Change Point Detection Algorithms on real-world data

Turing Change Point Detection Benchmark Welcome to the repository for the Turing Change Point Detection Benchmark, a benchmark evaluation of change po

The Alan Turing Institute 85 Dec 28, 2022
[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Y

118 Dec 26, 2022
A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data Overview Clustering analysis is widely utilized in single-cell RNA-seque

AI-Biomed @NSCC-gz 3 May 08, 2022
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"

Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.

Jaeyeon Ahn 2 Mar 22, 2022
Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network

Self-Classifier: Self-Supervised Classification Network Official PyTorch implementation and pretrained models of the paper Self-Supervised Classificat

Elad Amrani 24 Dec 21, 2022
The "breathing k-means" algorithm with datasets and example notebooks

The Breathing K-Means Algorithm (with examples) The Breathing K-Means is an approximation algorithm for the k-means problem that (on average) is bette

Bernd Fritzke 75 Nov 17, 2022
Implementation of QuickDraw - an online game developed by Google, combined with AirGesture - a simple gesture recognition application

QuickDraw - AirGesture Introduction Here is my python source code for QuickDraw - an online game developed by google, combined with AirGesture - a sim

Viet Nguyen 89 Dec 18, 2022
Adaptive Graph Convolution for Point Cloud Analysis

Adaptive Graph Convolution for Point Cloud Analysis This repository contains the implementation of AdaptConv for point cloud analysis. Adaptive Graph

64 Dec 21, 2022
FrankMocap: A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

FrankMocap pursues an easy-to-use single view 3D motion capture system developed by Facebook AI Research (FAIR). FrankMocap provides state-of-the-art 3D pose estimation outputs for body, hand, and bo

Facebook Research 1.9k Jan 07, 2023
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea

Christopher Hsu 17 Nov 17, 2022
Codes for 'Dual Parameterization of Sparse Variational Gaussian Processes'

Dual Parameterization of Sparse Variational Gaussian Processes Documentation | Notebooks | API reference Introduction This repository is the official

AaltoML 7 Dec 23, 2022
ROS support for Velodyne 3D LIDARs

Overview Velodyne1 is a collection of ROS2 packages supporting Velodyne high definition 3D LIDARs3. Warning: The master branch normally contains code

ROS device drivers 543 Dec 30, 2022