๐Ÿงฎ Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model after All

Overview

LDA4Rec

Project generated with PyScaffold

Accompanying source code to the paper "Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model After All" by Florian Wilhelm. The preprint can be found here along with the following statement:

"ยฉ Florian Wilhelm 2021. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive version was published in RecSys '21: Fifteenth ACM Conference on Recommender Systems Proceedings, https://doi.org/10.1145/3460231.3474266."

Installation

In order to set up the necessary environment:

  1. review and uncomment what you need in environment.yml and create an environment lda4rec with the help of conda:
    conda env create -f environment.yml
    
  2. activate the new environment with:
    conda activate lda4rec
    
  3. (optionally) get a free neptune.ai account for experiment tracking and save the api token under ~/.neptune_api_token (default).

Running Experiments

First check out and adapt the default experiment config configs/default.yaml and run it with:

lda4rec -c configs/default.yaml run

A config like configs/default.yaml can also be used as a template to create an experiment set with:

lda4rec -c configs/default.yaml create -ds movielens-100k

using the Movielens-100k dataset. Check out cli.py for more details.

Cloud Setup

Commands for setting up an Ubuntu 20.10 VM with at least 20 GiB of HD on e.g. a GCP c2-standard-30 instance:

tmux
sudo apt-get install -y build-essential
curl https://sh.rustup.rs -sSf | sh
source $HOME/.cargo/env
cargo install pueue
curl https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O
sh Miniconda3-latest-Linux-x86_64.sh
source ~/.bashrc
git clone https://github.com/FlorianWilhelm/lda4rec.git
cd lda4rec
conda env create -f environment.yml
conda activate lda4rec
vim ~/.neptune_api_token # and copy it over

Then create and run all experiments for full control over parallelism with pueue:

pueued -d # only once to start the daemon
pueue parallel 10
export OMP_NUM_THREADS=4  # to limit then number of threads per model
lda4rec -c configs/default.yaml create # to create the config files
find ./configs -maxdepth 1 -name "exp_*.yaml" -exec pueue add "lda4rec -c {} run" \; -exec sleep 30 \;

Remark: -exec sleep 30 avoids race condition when reading datasets if parallelism is too high.

Dependency Management & Reproducibility

  1. Always keep your abstract (unpinned) dependencies updated in environment.yml and eventually in setup.cfg if you want to ship and install your package via pip later on.
  2. Create concrete dependencies as environment.lock.yml for the exact reproduction of your environment with:
    conda env export -n lda4rec -f environment.lock.yml
    For multi-OS development, consider using --no-builds during the export.
  3. Update your current environment with respect to a new environment.lock.yml using:
    conda env update -f environment.lock.yml --prune

Project Organization

โ”œโ”€โ”€ AUTHORS.md              <- List of developers and maintainers.
โ”œโ”€โ”€ CHANGELOG.md            <- Changelog to keep track of new features and fixes.
โ”œโ”€โ”€ LICENSE.txt             <- License as chosen on the command-line.
โ”œโ”€โ”€ README.md               <- The top-level README for developers.
โ”œโ”€โ”€ configs                 <- Directory for configurations of model & application.
โ”œโ”€โ”€ data                    <- Downloaded datasets will be stored here.
โ”œโ”€โ”€ docs                    <- Directory for Sphinx documentation in rst or md.
โ”œโ”€โ”€ environment.yml         <- The conda environment file for reproducibility.
โ”œโ”€โ”€ notebooks               <- Jupyter notebooks. Naming convention is a number (for
โ”‚                              ordering), the creator's initials and a description,
โ”‚                              e.g. `1.0-fw-initial-data-exploration`.
โ”œโ”€โ”€ logs                    <- Generated logs are collected here.
โ”œโ”€โ”€ results                 <- Results as exported from neptune.ai.
โ”œโ”€โ”€ setup.cfg               <- Declarative configuration of your project.
โ”œโ”€โ”€ setup.py                <- Use `python setup.py develop` to install for development or
โ”‚                              or create a distribution with `python setup.py bdist_wheel`.
โ”œโ”€โ”€ src
โ”‚   โ””โ”€โ”€ lda4rec             <- Actual Python package where the main functionality goes.
โ”œโ”€โ”€ tests                   <- Unit tests which can be run with `py.test`.
โ”œโ”€โ”€ .coveragerc             <- Configuration for coverage reports of unit tests.
โ”œโ”€โ”€ .isort.cfg              <- Configuration for git hook that sorts imports.
โ””โ”€โ”€ .pre-commit-config.yaml <- Configuration of pre-commit git hooks.

How to Cite

Please cite LDA4Rec if it helps your research. You can use the following BibTeX entry:

@inproceedings{wilhelm2021lda4rec,
author = {Wilhelm, Florian},
title = {Matrix Factorization for Collaborative Filtering Is Just Solving an Adjoint Latent Dirichlet Allocation Model After All},
year = {2021},
month = sep,
isbn = {978-1-4503-8458-2/21/09},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3460231.3474266},
doi = {10.1145/3460231.3474266},
booktitle = {Fifteenth ACM Conference on Recommender Systems},
numpages = {8},
location = {Amsterdam, Netherlands},
series = {RecSys '21}
}

License

This sourcecode is AGPL-3-only licensed. If you require a more permissive licence, e.g. for commercial reasons, contact me to obtain a licence for your business.

Acknowledgement

Special thanks goes to Du Phan and Fritz Obermeyer from the (Num)Pyro project for their kind help and helpful comments on my code.

Note

This project has been set up using PyScaffold 4.0 and the dsproject extension 0.6. Some source code was taken from Spotlight (MIT-licensed) by Maciej Kula as well as lrann (MIT-licensed) by Florian Wilhelm and Marcel Kurovski.

Owner
Florian Wilhelm
Data Scientist with a mathematical background.
Florian Wilhelm
Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Ng Kam Woh 71 Dec 22, 2022
[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations

Learning to Compose Visual Relations This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations. Demo Imag

Nan Liu 88 Jan 04, 2023
CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

155 Dec 17, 2022
SNIPS: Solving Noisy Inverse Problems Stochastically

SNIPS: Solving Noisy Inverse Problems Stochastically This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problem

Bahjat Kawar 35 Nov 09, 2022
More than a hundred strange attractors

dysts Analyze more than a hundred chaotic systems. Basic Usage Import a model and run a simulation with default initial conditions and parameter value

William Gilpin 185 Dec 23, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
A simple library that implements CLIP guided loss in PyTorch.

pytorch_clip_guided_loss: Pytorch implementation of the CLIP guided loss for Text-To-Image, Image-To-Image, or Image-To-Text generation. A simple libr

Sergei Belousov 74 Dec 26, 2022
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
Code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectrograms, using the PyTorch Lightning.

stereoEEG2speech We provide code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectro

15 Nov 11, 2022
This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our paper "Accounting for Gaussian Process Imprecision in Bayesian Optimization"

Prior-RObust Bayesian Optimization (PROBO) Introduction, TOC This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our

Julian Rodemann 2 Mar 19, 2022
Code for paper Adaptively Aligned Image Captioning via Adaptive Attention Time

Adaptively Aligned Image Captioning via Adaptive Attention Time This repository includes the implementation for Adaptively Aligned Image Captioning vi

Lun Huang 45 Aug 27, 2022
Code for Transformer Hawkes Process, ICML 2020.

Transformer Hawkes Process Source code for Transformer Hawkes Process (ICML 2020). Run the code Dependencies Python 3.7. Anaconda contains all the req

Simiao Zuo 111 Dec 26, 2022
Deep Distributed Control of Port-Hamiltonian Systems

De(e)pendable Distributed Control of Port-Hamiltonian Systems (DeepDisCoPH) This repository is associated to the paper [1] and it contains: The full p

Dependable Control and Decision group - EPFL 3 Aug 17, 2022
YOLOX-RMPOLY

ๆœฌ็ฎ—ๆณ•ไธบ้€‚ๅบ”robomasterๆฏ”่ต›๏ผŒ่€Œๆ”นๅŠจ่‡ช็Ÿฉๅฝข่ฏ†ๅˆซ็š„yolox็ฎ—ๆณ•ใ€‚ ๅŸบไบŽๆ—ท่ง†็ง‘ๆŠ€YOLOX๏ผŒๅฎž็Žฐๅฏนไธ่ง„ๅˆ™ๅ››่พนๅฝข็š„็›ฎๆ ‡ๆฃ€ๆต‹ TODO ไฟฎๆ”นonnxๆŽจ็†ๆจกๅž‹ ๆ›ดๆ”น/ๆทปๅŠ ๆ ‡ๆณจ๏ผš 1.yolox/models/yolox_polyhead.py: 1.1็ปงๆ‰ฟyolox/models/yolo_

3 Feb 25, 2022
Block-wisely Supervised Neural Architecture Search with Knowledge Distillation (CVPR 2020)

DNA This repository provides the code of our paper: Blockwisely Supervised Neural Architecture Search with Knowledge Distillation. Illustration of DNA

Changlin Li 215 Dec 19, 2022
Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, Pattern Recognition

USDAN The implementation of Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, which is accepte

11 Nov 03, 2022
Tightness-aware Evaluation Protocol for Scene Text Detection

TIoU-metric Release on 27/03/2019. This repository is built on the ICDAR 2015 evaluation code. If you propose a better metric and require further eval

Yuliang Liu 206 Nov 18, 2022
Small utility to demangle Nim symbols in callgrind files

nim_callgrind A small utility to demangle Nim symbols from callgrind files. Usage Run your (Nim) program with something like this: valgrind --tool=cal

kraptor 3 Feb 15, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022