Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Overview

Patch2Pix for Accurate Image Correspondence Estimation

This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pix: Epipolar-Guided Pixel-Level Correspondences. [Paper] [Video].

Overview To use our code, first download the repository:

git clone [email protected]:GrumpyZhou/patch2pix.git

Setup Running Environment

The code has been tested on Ubuntu (16.04&18.04) with Python 3.7 + Pytorch 1.7.0 + CUDA 10.2.
We recommend to use Anaconda to manage packages and reproduce the paper results. Run the following lines to automatically setup a ready environment for our code.

conda env create -f environment.yml
conda activte patch2pix

Download Pretrained Models

In order to run our examples, one needs to first download our pretrained Patch2Pix model. To further train a Patch2Pix model, one needs to download the pretrained NCNet. We provide the download links in pretrained/download.sh. To download both, one can run

cd pretrained
bash download.sh

Evaluation

❗️ NOTICE ❗️ : In this repository, we only provide examples to estimate correspondences using our Patch2Pix implemenetation.

To reproduce our evalutions on HPatches, Aachen and InLoc benchmarks, we refer you to our toolbox for image matching: image-matching-toolbox. There, you can also find implementation to reproduce the results of other state-of-the-art methods that we compared to in our paper.

Matching Examples

In our notebook examples/visualize_matches.ipynb , we give examples how to obtain matches given a pair of images using both Patch2Pix (our pretrained) and NCNet (our adapted). The example image pairs are borrowed from D2Net, one can easily replace it with your own examples.

Training

Notice the followings are necessary only if you want to train a model yourself.

Data preparation

We use MegaDepth dataset for training. To keep more data for training, we didn't split a validation set from MegaDepth. Instead we use the validation splits of PhotoTourism. The following steps describe how to prepare the same training and validation data that we used.

Preapre Training Data

  1. We preprocess MegaDepth dataset following the preprocessing steps proposed by D2Net. For details, please checkout their "Downloading and preprocessing the MegaDepth dataset" section in their github documentation.

  2. Then place the processed MegaDepth dataset under data/ folder and name it as MegaDepth_undistort (or create a symbolic link for it).

  3. One can directly download our pre-computred training pairs using our download script.

cd data_pairs
bash download.sh

In case one wants to generate pairs with different settings, we provide notebooks to generate pairs from scratch. Once you finish step 1 and 2, the training pairs can be generated using our notebook data_pairs/prep_megadepth_training_pairs.ipynb.

Preapre Validation Data

  1. Use our script to dowload and extract the subset of train and val sequences from the PhotoTourism dataset.
cd data
bash prepare_immatch_val_data.sh
  1. Precompute image pairwise overlappings for fast loading of validation pairs.
# Under the root folder: patch2pix/
python -m data_pairs.precompute_immatch_val_ovs \
		--data_root data/immatch_benchmark/val_dense

Training Examples

To train our best model:

python -m train_patch2pix --gpu 0 \
    --epochs 25 --batch 4 \
    --save_step 1 --plot_counts 20 --data_root 'data' \
    --change_stride --panc 8 --ptmax 400 \
    --pretrain 'pretrained/ncn_ivd_5ep.pth' \
    -lr 0.0005 -lrd 'multistep' 0.2 5 \
    --cls_dthres 50 5 --epi_dthres 50 5  \
    -o 'output/patch2pix' 

The above command will save the log file and checkpoints to the output folder specified by -o. Our best model was trained on a 48GB GPU. To train on a smaller GPU, e.g, with 12 GB, one can either set --batch 1 or --ptmax 250 which defines the maximum number of match proposals to be refined for each image pair. However, those changes might also decrease the training performance according to our experience. Notice, during the testing, our network only requires 12GB GPU.

Usage of Visdom Server Our training script is coded to monitor the training process using Visdom. To enable the monitoring, one needs to:

  1. Run a visdom sever on your localhost, for example:
# Feel free to change the port
python -m visdom.server -port 9333 \
-env_path ~/.visdom/patch2pix
  1. Append options -vh 'localhost' -vp 9333 to the commands of the training example above.

BibTeX

If you use our method or code in your project, please cite our paper:

@inproceedings{ZhouCVPRpatch2pix,
        author       = "Zhou, Qunjie and Sattler, Torsten and Leal-Taixe, Laura",
        title        = "Patch2Pix: Epipolar-Guided Pixel-Level Correspondences",
        booktitle    = "CVPR",
        year         = 2021,
}
Owner
Qunjie Zhou
PhD Candidate at the Dynamic Vision and Learning Group.
Qunjie Zhou
performing moving objects segmentation using image processing techniques with opencv and numpy

Moving Objects Segmentation On this project I tried to perform moving objects segmentation using background subtraction technique. the introduced meth

Mohamed Magdy 15 Dec 12, 2022
Consensus score for tripadvisor

ContripScore ContripScore is essentially a score that combines an Internet platform rating and a consensus rating from sentiment analysis (For instanc

Pepe 1 Jan 13, 2022
Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project

Space Invaders This is a simple SPACE INVADER game create using PYGAME whihc hav

Gaurav Pandey 2 Jan 08, 2022
The code repository for EMNLP 2021 paper "Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization".

Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization [Paper] accepted at the EMNLP 2021: Vision Guided Genera

CAiRE 42 Jan 07, 2023
An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"

RASP Setup Mac or Linux Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to insta

141 Jan 03, 2023
Code for the paper "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021)

MASTER-PyTorch PyTorch reimplementation of "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021). This projec

Wenwen Yu 255 Dec 29, 2022
Spline is a tool that is capable of running locally as well as part of well known pipelines like Jenkins (Jenkinsfile), Travis CI (.travis.yml) or similar ones.

Welcome to spline - the pipeline tool Important note: Since change in my job I didn't had the chance to continue on this project. My main new project

Thomas Lehmann 29 Aug 22, 2022
An end-to-end regression problem of predicting the price of properties in Bangalore.

Bangalore-House-Price-Prediction An end-to-end regression problem of predicting the price of properties in Bangalore. Deployed in Heroku using Flask.

Shruti Balan 1 Nov 25, 2022
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style

Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style [NeurIPS 2021] Official code to reproduce the results and data p

Yash Sharma 27 Sep 19, 2022
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [PaddlePaddle Implementation] Homepage of paper: Paint Transformer: Fee

442 Dec 16, 2022
A SAT-based sudoku solver

SAT Sudoku solver A SAT-based Sudoku solver made in the context of a small project in the "Logic Problem Solving" class in the first year at the Polyt

Alexandre Malfreyt 5 Apr 15, 2022
TransCD: Scene Change Detection via Transformer-based Architecture

TransCD: Scene Change Detection via Transformer-based Architecture

wangzhixue 29 Dec 11, 2022
KwaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%)

KuaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%) KuaiRec is a real-world dataset collected from the recommendation log

Chongming GAO (高崇铭) 70 Dec 28, 2022
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022
Official PyTorch implementation of "Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble" (NeurIPS'21)

Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble This is the code for reproducing the results of the paper Uncertainty-Bas

43 Nov 23, 2022
(CVPR 2021) Lifting 2D StyleGAN for 3D-Aware Face Generation

Lifting 2D StyleGAN for 3D-Aware Face Generation Official implementation of paper "Lifting 2D StyleGAN for 3D-Aware Face Generation". Requirements You

Yichun Shi 66 Nov 29, 2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

LinpengPan 5 Nov 09, 2022
Learn other languages ​​using artificial intelligence with python.

The main idea of ​​the project is to facilitate the learning of other languages. We created a simple AI that will interact with you. Just ask questions that if she knows, she will answer.

Pedro Rodrigues 2 Jun 07, 2022