Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Overview

Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

This is our implementation of Points2Surf, a network that estimates a signed distance function from point clouds. This SDF is turned into a mesh with Marching Cubes. For more details, please watch the short video and long video.

Points2Surf reconstructs objects from arbitrary points clouds more accurately than DeepSDF, AtlasNet and Screened Poisson Surface Reconstruction.

The architecture is similar to PCPNet. In contrast to other ML-based surface reconstruction methods, e.g. DeepSDF and AtlasNet, Points2Surf is patch-based and therefore independent from classes. The strongly improved generalization leads to much better results, even better than Screened Poisson Surface Reconstruction in most cases.

This code was mostly written by Philipp Erler and Paul Guerrero. This work was published at ECCV 2020.

Prerequisites

  • Python >= 3.7
  • PyTorch >= 1.6
  • CUDA and CuDNN if using GPU
  • BlenSor 1.0.18 RC 10 for dataset generation

Quick Start

To get a minimal working example for training and reconstruction, follow these steps. We recommend using Anaconda to manage the Python environment. Otherwise, you can install the required packages with Pip as defined in the requirements.txt.

# clone this repo
# a minimal dataset is included (2 shapes for training, 1 for evaluation)
git clone https://github.com/ErlerPhilipp/points2surf.git

# go into the cloned dir
cd points2surf

# create a conda environment with the required packages
conda env create --file p2s.yml

# activate the new conda environment
conda activate p2s

# train and evaluate the vanilla model with default settings
python full_run.py

Reconstruct Surfaces from our Point Clouds

Reconstruct meshes from a point clouds to replicate our results:

# download the test datasets
python datasets/download_datasets_abc.py
python datasets/download_datasets_famous.py
python datasets/download_datasets_thingi10k.py
python datasets/download_datasets_real_world.py

# download the pre-trained models
python models/download_models_vanilla.py
python models/download_models_ablation.py
python models/download_models_max.py

# start the evaluation for each model
# Points2Surf main model, trained for 150 epochs
bash experiments/eval_p2s_vanilla.sh

# ablation models, trained to for 50 epochs
bash experiments/eval_p2s_small_radius.sh
bash experiments/eval_p2s_medium_radius.sh
bash experiments/eval_p2s_large_radius.sh
bash experiments/eval_p2s_small_kNN.sh
bash experiments/eval_p2s_large_kNN.sh
bash experiments/eval_p2s_shared_transformer.sh
bash experiments/eval_p2s_no_qstn.sh
bash experiments/eval_p2s_uniform.sh
bash experiments/eval_p2s_vanilla_ablation.sh

# additional ablation models, trained for 50 epochs
bash experiments/eval_p2s_regression.sh
bash experiments/eval_p2s_shared_encoder.sh

# best model based on the ablation results, trained for 250 epochs
bash experiments/eval_p2s_max.sh

Each eval script reconstructs all test sets using the specified model. Running one evaluation takes around one day on a normal PC with e.g. a 1070 GTX and grid resolution = 256.

To get the best results, take the Max model. It's 15% smaller and produces 4% better results (mean Chamfer distance over all test sets) than the Vanilla model. It avoids the QSTN and uses uniform sub-sampling.

Training with our Dataset

To train the P2S models from the paper with our training set:

# download the ABC training and validation set
python datasets/download_datasets_abc_training.py

# start the evaluation for each model
# Points2Surf main model, train for 150 epochs
bash experiments/train_p2s_vanilla.sh

# ablation models, train to for 50 epochs
bash experiments/train_p2s_small_radius.sh
bash experiments/train_p2s_medium_radius.sh
bash experiments/train_p2s_large_radius.sh
bash experiments/train_p2s_small_kNN.sh
bash experiments/train_p2s_large_kNN.sh
bash experiments/train_p2s_shared_transformer.sh
bash experiments/train_p2s_no_qstn.sh
bash experiments/train_p2s_uniform.sh
bash experiments/train_p2s_vanilla_ablation.sh

# additional ablation models, train for 50 epochs
bash experiments/train_p2s_regression.sh
bash experiments/train_p2s_shared_encoder.sh

# best model based on the ablation results, train for 250 epochs
bash experiments/train_p2s_max.sh

With 4 RTX 2080Ti, we trained around 5 days to 150 epochs. Full convergence is at 200-250 epochs but the Chamfer distance doesn't change much. The topological noise might be reduced, though.

Logging of loss (absolute distance, sign logits and both) with Tensorboard is done by default. Additionally, we log the accuracy, recall and F1 score for the sign prediction. You can start a Tensorboard server with:

bash start_tensorboard.sh

Make your own Datasets

The point clouds are stored as NumPy arrays of type np.float32 with ending .npy where each line contains the 3 coordinates of a point. The point clouds need to be normalized to the (-1..+1)-range.

A dataset is given by a text file containing the file name (without extension) of one point cloud per line. The file name is given relative to the location of the text file.

Dataset from Meshes for Training and Reconstruction

To make your own dataset from meshes, place your ground-truth meshes in ./datasets/(DATASET_NAME)/00_base_meshes/. Meshes must be of a type that Trimesh can load, e.g. .ply, .stl, .obj or .off. Because we need to compute signed distances for the training set, these input meshes must represent solids, i.e be manifold and watertight. Triangulated CAD objects like in the ABC-Dataset work in most cases. Next, create the text file ./datasets/(DATASET_NAME)/settings.ini with the following settings:

[general]
only_for_evaluation = 0
grid_resolution = 256
epsilon = 5
num_scans_per_mesh_min = 5
num_scans_per_mesh_max = 30
scanner_noise_sigma_min = 0.0
scanner_noise_sigma_max = 0.05

When you set only_for_evaluation = 1, the dataset preparation script skips most processing steps and produces only the text file for the test set.

For the point-cloud sampling, we used BlenSor 1.0.18 RC 10. Windows users need to fix a bug in the BlenSor code. Make sure that the blensor_bin variable in make_dataset.py points to your BlenSor binary, e.g. blensor_bin = "bin/Blensor-x64.AppImage".

You may need to change other paths or the number of worker processes and run:

python make_dataset.py

The ABC var-noise dataset with about 5k shapes takes around 8 hours using 15 worker processes on a Ryzen 7. Most computation time is required for the sampling and the GT signed distances.

Dataset from Point Clouds for Reconstruction

If you only want to reconstruct your own point clouds, place them in ./datasets/(DATASET_NAME)/00_base_pc/. The accepted file types are the same as for meshes.

You need to change some settings like the dataset name and the number of worker processes in make_pc_dataset.py and then run it with:

python make_pc_dataset.py

Manually Created Dataset for Reconstruction

In case you already have your point clouds as Numpy files, you can create a dataset manually. Put the *.npy files in the (DATASET_NAME)/04_pts/ directory. Then, you need to list the names (without extensions, one per line) in a textfile (DATASET_NAME)/testset.txt.

Related Work

Kazhdan, Michael, and Hugues Hoppe. "Screened poisson surface reconstruction." ACM Transactions on Graphics (ToG) 32.3 (2013): 1-13.

This work is the most important baseline for surface reconstruction. It fits a surface into a point cloud.

Groueix, Thibault, et al. "A papier-mâché approach to learning 3d surface generation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

This is one of the first data-driven methods for surface reconstruction. It learns to approximate objects with 'patches', deformed and subdivided rectangles.

Park, Jeong Joon, et al. "Deepsdf: Learning continuous signed distance functions for shape representation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.

This is one of the first data-driven methods for surface reconstruction. It learns to approximate a signed distance function from points.

Chabra, Rohan, et al. "Deep Local Shapes: Learning Local SDF Priors for Detailed 3D Reconstruction." arXiv preprint arXiv:2003.10983 (2020).

This concurrent work uses a similar approach as ours. It produces smooth surfaces but requires point normals.

Citation

If you use our work, please cite our paper:

@InProceedings{ErlerEtAl:Points2Surf:ECCV:2020,
  title   = {{Points2Surf}: Learning Implicit Surfaces from Point Clouds}, 
  author="Erler, Philipp
    and Guerrero, Paul
    and Ohrhallinger, Stefan
    and Mitra, Niloy J.
    and Wimmer, Michael",
  editor="Vedaldi, Andrea
    and Bischof, Horst
    and Brox, Thomas
    and Frahm, Jan-Michael",
  year    = {2020},
  booktitle="Computer Vision -- ECCV 2020",
  publisher="Springer International Publishing",
  address="Cham",
  pages="108--124",
  abstract="A key step in any scanning-based asset creation workflow is to convert unordered point clouds to a surface. Classical methods (e.g., Poisson reconstruction) start to degrade in the presence of noisy and partial scans. Hence, deep learning based methods have recently been proposed to produce complete surfaces, even from partial scans. However, such data-driven methods struggle to generalize to new shapes with large geometric and topological variations. We present Points2Surf, a novel patch-based learning framework that produces accurate surfaces directly from raw scans without normals. Learning a prior over a combination of detailed local patches and coarse global information improves generalization performance and reconstruction accuracy. Our extensive comparison on both synthetic and real data demonstrates a clear advantage of our method over state-of-the-art alternatives on previously unseen classes (on average, Points2Surf brings down reconstruction error by 30{\%} over SPR and by 270{\%}+ over deep learning based SotA methods) at the cost of longer computation times and a slight increase in small-scale topological noise in some cases. Our source code, pre-trained model, and dataset are available at: https://github.com/ErlerPhilipp/points2surf.",
  isbn="978-3-030-58558-7"
  doi = {10.1007/978-3-030-58558-7_7},
}
Owner
Philipp Erler
PhD student at TU Wien researching surface reconstruction with deep learning
Philipp Erler
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

Ibai Gorordo 46 Nov 17, 2022
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech

Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio

Keon Lee 114 Jan 08, 2023
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

DV Lab 21 Nov 28, 2022
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
True Few-Shot Learning with Language Models

This codebase supports using language models (LMs) for true few-shot learning: learning to perform a task using a limited number of examples from a single task distribution.

Ethan Perez 124 Jan 04, 2023
An ML & Correlation platform for transforming disparate data points of interest into usable intelligence.

SSIDprobeCollector An ML & Correlation platform for transforming disparate data points of interest into usable intelligence. At a High level the platf

Bill Reyor 1 Jan 30, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

SimMIM By Zhenda Xie*, Zheng Zhang*, Yue Cao*, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai and Han Hu*. This repo is the official implementation of

Microsoft 674 Dec 26, 2022
Warning: This project does not have any current developer. See bellow.

Pylearn2: A machine learning research library Warning : This project does not have any current developer. We will continue to review pull requests and

Laboratoire d’Informatique des Systèmes Adaptatifs 2.7k Dec 26, 2022
Official Implementation for Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation

Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation We present a generic image-to-image translation framework, pixel2style2pixel (pSp

2.8k Dec 30, 2022
Machine Unlearning with SISA

Machine Unlearning with SISA Lucas Bourtoule, Varun Chandrasekaran, Christopher Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, N

CleverHans Lab 70 Jan 01, 2023
My implementation of Fully Convolutional Neural Networks in Keras

Keras-FCN This repository contains my implementation of Fully Convolutional Networks in Keras (Tensorflow backend). Currently, semantic segmentation c

The Duy Nguyen 15 Jan 13, 2020
Go from graph data to a secure and interactive visual graph app in 15 minutes. Batteries-included self-hosting of graph data apps with Streamlit, Graphistry, RAPIDS, and more!

✔️ Linux ✔️ OS X ❌ Windows (#39) Welcome to graph-app-kit Turn your graph data into a secure and interactive visual graph app in 15 minutes! Why This

Graphistry 107 Jan 02, 2023
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022
Contextual Attention Localization for Offline Handwritten Text Recognition

CALText This repository contains the source code for CALText model introduced in "CALText: Contextual Attention Localization for Offline Handwritten T

0 Feb 17, 2022
Yas CRNN model training - Yet Another Genshin Impact Scanner

Yas-Train Yet Another Genshin Impact Scanner 又一个原神圣遗物导出器 介绍 该仓库为 Yas 的模型训练程序 相关资料 MobileNetV3 CRNN 使用 假设你会设置基本的pytorch环境。 生成数据集 python main.py gen 训练

wormtql 18 Jan 08, 2023
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
A simple, fully convolutional model for real-time instance segmentation.

You Only Look At CoefficienTs ██╗ ██╗ ██████╗ ██╗ █████╗ ██████╗████████╗ ╚██╗ ██╔╝██╔═══██╗██║ ██╔══██╗██╔════╝╚══██╔══╝ ╚██

Daniel Bolya 4.6k Dec 30, 2022
Meaningful titles for tabs and PDF downloads! Also supports tab search.

arxiv-utils If you are a researcher that reads a lot on ArXiv, you'll benefit a lot from this web extension. Renames the title of PDF page to the pape

Johnson 174 Dec 20, 2022