moving object detection for satellite videos.

Overview

DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos

outline

Algorithm Introduction

DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos, Chao Xiao, Qian Yin, and Xingyi Ying.

We propose a two-stream network named DSFNet to combine the static context information and the dynamic motion cues to detect small moving object in satellite videos. Experiments on videos collected from Jilin-1 satellite and the results have demonstrated the effectiveness and robustness of the proposed DSFNet. For more detailed information, please refer to the paper.

In this code, we also apply SORT to get the tracking results of DSFNet.

Citation

If you find the code useful, please consider citing our paper using the following BibTeX entry.

@article{xiao2021dsfnet,
  title={DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos},
  author={Xiao, Chao and Yin, Qian and Ying, Xinyi and Li, Ruojing and Wu, Shuanglin and Li, Miao and Liu, Li and An, Wei and Chen, Zhijie},
  journal={IEEE Geoscience and Remote Sensing Letters},
  volume={19},
  pages={1--5},
  year={2021},
  publisher={IEEE}
}

Prerequisite

  • Tested on Ubuntu 20.04, with Python 3.7, PyTorch 1.7, Torchvision 0.8.1, CUDA 10.2, and 2x NVIDIA 2080Ti.
  • You can follow CenterNet to build the conda environment but remember to replace the DCNv2 used here with the used DCNv2 by CenterNet (Because we used the latested version of DCNv2 under PyTorch 1.7).
  • You can also follow CenterNet to build the conda environment with Python 3.7, PyTorch 1.7, Torchvision 0.8.1 and run this code.
  • The dataset used here is available in [BaiduYun](Sharing code: 4afk). You can download the dataset and put it to the data folder.

Usage

On Ubuntu:

1. Train.

python train.py --model_name DSFNet --gpus 0,1 --lr 1.25e-4 --lr_step 30,45 --num_epochs 55 --batch_size 4 --val_intervals 5  --test_large_size True --datasetname rsdata --data_dir  ./data/RsCarData/

2. Test.

python test.py --model_name DSFNet --gpus 0 --load_model ./checkpoints/DSFNet.pth --test_large_size True --datasetname rsdata --data_dir  ./data/RsCarData/ 

(Optional 1) Test and visulization.

python test.py --model_name DSFNet --gpus 0 --load_model ./checkpoints/DSFNet.pth --test_large_size True --show_results True --datasetname rsdata --data_dir  ./data/RsCarData/ 

(Optional 2) Test and visualize the tracking results of SORT.

python testTrackingSort.py --model_name DSFNet --gpus 0 --load_model ./checkpoints/DSFNet.pth --test_large_size True --save_track_results True --datasetname rsdata --data_dir  ./data/RsCarData/ 

Results and Trained Models

Qualitative Results

outline

Quantative Results

Quantitative results of different models evaluated by [email protected]. The model weights are available at [BaiduYun](Sharing code: bidt). You can down load the model weights and put it to the checkpoints folder.

Models [email protected]
DSFNet with Static 54.3
DSFNet with Dynamic 60.5
DSFNet 70.5

*This code is highly borrowed from CenterNet. Thanks to Xingyi zhou.

*The overall repository style is highly borrowed from DNANet. Thanks to Boyang Li.

*The dataset is part of VISO. Thanks to Qian Yin.

Referrences

  1. X. Zhou, D. Wang, and P. Krahenbuhl, "Objects as points," arXiv preprint arXiv:1904.07850, 2019.
  2. K. Simonyan and A. Zisserman, "Two-stream convolutional networks for action recognition in videos," Advances in NeurIPS, vol. 1, 2014.
  3. Bewley, Alex, et al. "Simple online and realtime tracking." 2016 IEEE international conference on image processing (ICIP). IEEE, 2016.
  4. Yin, Qian, et al., "Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark," IEEE Transactions on Geoscience and Remote Sensing (2021).

To Do

Update the model weights trained on VISO.

Owner
xiaochao
xiaochao
Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021)

Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021) In this repository we provide PyTorch implementations for GeMCL; a

4 Apr 15, 2022
FFCV: Fast Forward Computer Vision (and other ML workloads!)

Fast Forward Computer Vision: train models at a fraction of the cost with accele

FFCV 2.3k Jan 03, 2023
Code release for ConvNeXt model

A ConvNet for the 2020s Official PyTorch implementation of ConvNeXt, from the following paper: A ConvNet for the 2020s. arXiv 2022. Zhuang Liu, Hanzi

Meta Research 4.6k Jan 08, 2023
Refactoring dalle-pytorch and taming-transformers for TPU VM

Text-to-Image Translation (DALL-E) for TPU in Pytorch Refactoring Taming Transformers and DALLE-pytorch for TPU VM with Pytorch Lightning Requirements

Kim, Taehoon 61 Nov 07, 2022
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022
基于Paddle框架的arcface复现

arcface-Paddle 基于Paddle框架的arcface复现 ArcFace-Paddle 本项目基于paddlepaddle框架复现ArcFace,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: InsightFace Padd

QuanHao Guo 16 Dec 15, 2022
Unofficial implementation of MUSIQ (Multi-Scale Image Quality Transformer)

MUSIQ: Multi-Scale Image Quality Transformer Unofficial pytorch implementation of the paper "MUSIQ: Multi-Scale Image Quality Transformer" (paper link

41 Jan 02, 2023
Machine Learning Model deployment for Container (TensorFlow Serving)

try_tf_serving ├───dataset │ ├───testing │ │ ├───paper │ │ ├───rock │ │ └───scissors │ └───training │ ├───paper │ ├───rock

Azhar Rizki Zulma 5 Jan 07, 2022
Behavioral "black-box" testing for recommender systems

RecList RecList Free software: MIT license Documentation: https://reclist.readthedocs.io. Overview RecList is an open source library providing behavio

Jacopo Tagliabue 375 Dec 30, 2022
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

36 Nov 23, 2022
Scikit-learn compatible estimation of general graphical models

skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships

213 Jan 02, 2023
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Welcome to Yearn Gnosis Safe! Setting up your local environment Infrastructure Deploying Gnosis Safe Prerequisites 1. Create infrastructure for secret

Numan 16 Jul 18, 2022
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning

THUML @ Tsinghua University 101 Dec 11, 2022
TensorFlow implementation of the paper "Hierarchical Attention Networks for Document Classification"

Hierarchical Attention Networks for Document Classification This is an implementation of the paper Hierarchical Attention Networks for Document Classi

Quoc-Tuan Truong 83 Dec 05, 2022
Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

SW-CV-ModelZoo Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset Framework: TF/Keras 2.7 Training SQLite D

20 Dec 27, 2022