PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"

Overview

SLAPS-GNN

This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks.

Datasets

ogbn-arxiv dataset will be loaded automatically, while Cora, Citeseer, and Pubmed are included in the GCN package, available here. Place the relevant files in the folder data_tf.

Dependencies

To train the models, you need a machine with a GPU.

To install the dependencies, it is recommended to use a virtual environment. You can create a virtual environment and install all the dependencies with the following command:

conda env create -f environment.yml

The file requirements.txt was written for CUDA 9.2 and Linux so you may need to adapt it to your infrastructure.

Usage

To run the model you should define the following parameters:

  • dataset: The dataset you want to run the model on
  • ntrials: number of runs
  • epochs_adj: number of epochs
  • epochs: number of epochs for GNN_C (used for knn_gcn and 2step learning of the model)
  • lr_adj: learning rate of GNN_DAE
  • lr: learning rate of GNN_C
  • w_decay_adj: l2 regularization parameter for GNN_DAE
  • w_decay: l2 regularization parameter for GNN_C
  • nlayers_adj: number of layers for GNN_DAE
  • nlayers: number of layers for GNN_C
  • hidden_adj: hidden size of GNN_DAE
  • hidden: hidden size of GNN_C
  • dropout1: dropout rate for GNN_DAE
  • dropout2: dropout rate for GNN_C
  • dropout_adj1: dropout rate on adjacency matrix for GNN_DAE
  • dropout_adj2: dropout rate on adjacency matrix for GNN_C
  • dropout2: dropout rate for GNN_C
  • k: k for knn initialization with knn
  • lambda_: weight of loss of GNN_DAE
  • nr: ratio of zeros to ones to mask out for binary features
  • ratio: ratio of ones to mask out for binary features and ratio of features to mask out for real values features
  • model: model to run (choices are end2end, knn_gcn, or 2step)
  • sparse: whether to make the adjacency sparse and run operations on sparse mode
  • gen_mode: identifies the graph generator
  • non_linearity: non-linearity to apply on the adjacency matrix
  • mlp_act: activation function to use for the mlp graph generator
  • mlp_h: hidden size of the mlp graph generator
  • noise: type of noise to add to features (mask or normal)
  • loss: type of GNN_DAE loss (mse or bce)
  • epoch_d: epochs_adj / epoch2 of the epochs will be used for training GNN_DAE
  • half_val_as_train: use half of validation for train to get Cora390 and Citeseer370

Reproducing the Results in the Paper

In order to reproduce the results presented in the paper, you should run the following commands:

Cora

FP

Run the following command:

python main.py -dataset cora -ntrials 10 -epochs_adj 2000 -lr 0.001 -lr_adj 0.01 -w_decay 0.0005 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 512 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.5 -dropout_adj2 0.25 -k 30 -lambda_ 10.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 0 -non_linearity elu -epoch_d 5

MLP

Run the following command:

python main.py -dataset cora -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.001 -w_decay 0.0005 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 512 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.5 -k 20 -lambda_ 10.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 1 -non_linearity relu -mlp_h 1433 -mlp_act relu -epoch_d 5

MLP-D

Run the following command:

python main.py -dataset cora -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.001 -w_decay 0.05 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 512 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.5 -k 15 -lambda_ 10.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 2 -non_linearity relu -mlp_act relu -epoch_d 5

Citeseer

FP

Run the following command:

python main.py -dataset citeseer -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.01 -w_decay 0.05 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 1024 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.4 -dropout_adj2 0.4 -k 30 -lambda_ 1.0 -nr 1 -ratio 10 -model end2end -sparse 0 -gen_mode 0 -non_linearity elu -epoch_d 5

MLP

Run the following command:

python main.py -dataset citeseer -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.001 -w_decay 0.0005 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 1024 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.5 -k 30 -lambda_ 10.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 1 -non_linearity relu -mlp_act relu -mlp_h 3703 -epoch_d 5

MLP-D

Run the following command:

python main.py -dataset citeseer -ntrials 10 -epochs_adj 2000 -lr 0.001 -lr_adj 0.01 -w_decay 0.05 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 1024 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.5 -dropout_adj2 0.5 -k 20 -lambda_ 10.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 2 -non_linearity relu -mlp_act tanh -epoch_d 5

Cora390

FP

Run the following command:

python main.py -dataset cora -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.01 -w_decay 0.0005 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 512 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.5 -k 20 -lambda_ 100.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 0 -non_linearity elu -epoch_d 5 -half_val_as_train 1

MLP

Run the following command:

python main.py -dataset cora -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.001 -w_decay 0.0005 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 512 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.5 -k 20 -lambda_ 10.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 1 -non_linearity relu -mlp_h 1433 -mlp_act relu -epoch_d 5 -half_val_as_train 1

MLP-D

Run the following command:

python main.py -dataset cora -ntrials 10 -epochs_adj 2000 -lr 0.001 -lr_adj 0.001 -w_decay 0.0005 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 512 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.5 -k 20 -lambda_ 10.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 2 -non_linearity relu -mlp_act relu -epoch_d 5 -half_val_as_train 1

Citeseer370

FP

Run the following command:

python main.py -dataset citeseer -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.01 -w_decay 0.05 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 1024 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.5 -dropout_adj2 0.5 -k 30 -lambda_ 1.0 -nr 1 -ratio 10 -model end2end -sparse 0 -gen_mode 0 -non_linearity elu -epoch_d 5 -half_val_as_train 1

MLP

Run the following command:

python main.py -dataset citeseer -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.001 -w_decay 0.0005 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 1024 -dropout1 0.25 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.5 -k 30 -lambda_ 10.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 1 -non_linearity relu -mlp_act tanh -mlp_h 3703 -epoch_d 5 -half_val_as_train 1

MLP-D

Run the following command:

python main.py -dataset citeseer -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.01 -w_decay 0.05 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 1024 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.5 -k 20 -lambda_ 10.0 -nr 5 -ratio 10 -model end2end -sparse 0 -gen_mode 2 -non_linearity relu -mlp_act tanh -epoch_d 5 -half_val_as_train 1

Pubmed

MLP

Run the following command:

python main.py -dataset pubmed -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.01 -w_decay 0.0005 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 128 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.5 -dropout_adj2 0.5 -k 15 -lambda_ 10.0 -nr 5 -ratio 20 -model end2end -gen_mode 1 -non_linearity relu -mlp_h 500 -mlp_act relu -epoch_d 5 -sparse 1

MLP-D

Run the following command:

python main.py -dataset pubmed -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.01 -w_decay 0.0005 -nlayers 2 -nlayers_adj 2 -hidden 32 -hidden_adj 128 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.25 -k 15 -lambda_ 100.0 -nr 5 -ratio 20 -model end2end -sparse 0 -gen_mode 2 -non_linearity relu -mlp_act tanh -epoch_d 5 -sparse 1

ogbn-arxiv

MLP

Run the following command:

python main.py -dataset ogbn-arxiv -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.001 -w_decay 0.0 -nlayers 2 -nlayers_adj 2 -hidden 256 -hidden_adj 256 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.25 -dropout_adj2 0.5 -k 15 -lambda_ 10.0 -nr 5 -ratio 100 -model end2end -sparse 0 -gen_mode 1 -non_linearity relu -mlp_h 128 -mlp_act relu -epoch_d 2001 -sparse 1 -loss mse -noise mask

MLP-D

Run the following command:

python main.py -dataset ogbn-arxiv -ntrials 10 -epochs_adj 2000 -lr 0.01 -lr_adj 0.001 -w_decay 0.0 -nlayers 2 -nlayers_adj 2 -hidden 256 -hidden_adj 256 -dropout1 0.5 -dropout2 0.5 -dropout_adj1 0.5 -dropout_adj2 0.25 -k 15 -lambda_ 10.0 -nr 5 -ratio 100 -model end2end -sparse 0 -gen_mode 2 -non_linearity relu -mlp_act relu -epoch_d 2001 -sparse 1 -loss mse -noise normal

Cite SLAPS

If you use this package for published work, please cite the following:

@inproceedigs{fatemi2021slaps,
  title={SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks},
  author={Fatemi, Bahare and Asri, Layla El and Kazemi, Seyed Mehran},
  booktitle={Advances in Neural Information Processing Systems},
  year={2021}
}
MaRS - a recursive filtering framework that allows for truly modular multi-sensor integration

The Modular and Robust State-Estimation Framework, or short, MaRS, is a recursive filtering framework that allows for truly modular multi-sensor integration

Control of Networked Systems - University of Klagenfurt 143 Dec 29, 2022
Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions"

Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions" Environment requirement This code is based on Python

Rohan Kumar Gupta 1 Dec 19, 2021
Production First and Production Ready End-to-End Speech Recognition Toolkit

WeNet 中文版 Discussions | Docs | Papers | Runtime (x86) | Runtime (android) | Pretrained Models We share neural Net together. The main motivation of WeN

2.7k Jan 04, 2023
Visual odometry package based on hardware-accelerated NVIDIA Elbrus library with world class quality and performance.

Isaac ROS Visual Odometry This repository provides a ROS2 package that estimates stereo visual inertial odometry using the Isaac Elbrus GPU-accelerate

NVIDIA Isaac ROS 343 Jan 03, 2023
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations Trevor Ablett, Daniel (Yifan) Zhai, Jonatha

STARS Laboratory 3 Feb 01, 2022
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W

Taihong Xiao 141 Apr 16, 2021
Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers

Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers This is an implementation of A Physics-Informed Vector Quantized Autoencoder for Dat

DreamSoul 3 Sep 12, 2022
SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning

SPCL SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning Update on 2021/11/25: ArXiv Ver

Binhui Xie (谢斌辉) 11 Oct 29, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
Dynamic Head: Unifying Object Detection Heads with Attentions

Dynamic Head: Unifying Object Detection Heads with Attentions dyhead_video.mp4 This is the official implementation of CVPR 2021 paper "Dynamic Head: U

Microsoft 550 Dec 21, 2022
Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19)

Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19) Tianyu Wang*, Xin Yang*, Ke Xu, Shaozhe Chen, Qiang Zhang, Ry

Steve Wong 177 Dec 01, 2022
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation

Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation Introduction 📋 Official implementation of Explainable Robust Learnin

JeongEun Park 6 Apr 19, 2022
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
Codes of the paper Deformable Butterfly: A Highly Structured and Sparse Linear Transform.

Deformable Butterfly: A Highly Structured and Sparse Linear Transform DeBut Advantages DeBut generalizes the square power of two butterfly factor matr

Rui LIN 8 Jun 10, 2022
Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation.

DuoRec Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation. Usage Download datasets fr

Qrh 46 Dec 19, 2022
SynNet - synthetic tree generation using neural networks

SynNet This repo contains the code and analysis scripts for our amortized approach to synthetic tree generation using neural networks. Our model can s

Wenhao Gao 60 Dec 29, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

200 Jan 08, 2023
Evaluating saliency methods on artificial data with different background types

Evaluating saliency methods on artificial data with different background types This repository contains the relevant code for the MedNeurips 2021 subm

2 Jul 05, 2022