A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

Related tags

Deep LearningPNG
Overview

❇️   ❇️     Please visit our Project Page to learn more about Panoptic Narrative Grounding.    ❇️   ❇️

Panoptic Narrative Grounding

This repository provides a PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral). Panoptic Narrative Grounding is a spatially fine and general formulation of the natural language visual grounding problem. We establish an experimental framework for the study of this new task, including new ground truth and metrics, and we propose a strong baseline method to serve as stepping stone for future work. We exploit the intrinsic semantic richness in an image by including panoptic categories, and we approach visual grounding at a fine-grained level by using segmentations. In terms of ground truth, we propose an algorithm to automatically transfer Localized Narratives annotations to specific regions in the panoptic segmentations of the MS COCO dataset. The proposed baseline achieves a performance of 55.4 absolute Average Recall points. This result is a suitable foundation to push the envelope further in the development of methods for Panoptic Narrative Grounding.

Paper

Panoptic Narrative Grounding,
Cristina González1, Nicolás Ayobi1, Isabela Hernández1, José Hernández 1, Jordi Pont-Tuset2, Pablo Arbeláez1
ICCV 2021 Oral.

1 Center for Research and Formation in Artificial Intelligence (CINFONIA) , Universidad de Los Andes.
2 Google Research, Switzerland.

Installation

Requirements

  • Python
  • Numpy
  • Pytorch 1.7.1
  • Tqdm 4.56.0
  • Scipy 1.5.3

Cloning the repository

$ git clone [email protected]:BCV-Uniandes/PNG.git
$ cd PNG

Dataset Preparation

Panoptic Marrative Grounding Benchmark

  1. Download the 2017 MSCOCO Dataset from its official webpage. You will need the train and validation splits' images1 and panoptic segmentations annotations.

  2. Download the Panoptic Narrative Grounding Benchmark and pre-computed features from our project webpage with the following folders structure:

panoptic_narrative_grounding
|_ images
|  |_ train2017
|  |_ val2017
|_ features
|  |_ train2017
|  |  |_ mask_features
|  |  |_ sem_seg_features
|  |  |_ panoptic_seg_predictions
|  |_ val2017
|     |_ mask_features
|     |_ sem_seg_features
|     |_ panoptic_seg_predictions
|_ annotations
   |_ png_coco_train2017.json
   |_ png_coco_val2017.json
   |_ panoptic_segmentation
      |_ train2017
      |_ val2017

Train setup:

Modify the routes in train_net.sh according to your local paths.

python main --init_method "tcp://localhost:8080" NUM_GPUS 1 DATA.PATH_TO_DATA_DIR path_to_your_data_dir DATA.PATH_TO_FEATURES_DIR path_to_your_features_dir OUTPUT_DIR output_dir

Test setup:

Modify the routes in test_net.sh according to your local paths.

python main --init_method "tcp://localhost:8080" NUM_GPUS 1 DATA.PATH_TO_DATA_DIR path_to_your_data_dir DATA.PATH_TO_FEATURES_DIR path_to_your_features_dir OUTPUT_DIR output_dir TRAIN.ENABLE "False"

Pretrained model

To reproduce all our results as reported bellow, you can use our pretrained model and our source code.

Method things + stuff things stuff
Oracle 64.4 67.3 60.4
Ours 55.4 56.2 54.3
MCN - 48.2 -
Method singulars + plurals singulars plurals
Oracle 64.4 64.8 60.7
Ours 55.4 56.2 48.8

Citation

If you find Panoptic Narrative Grounding useful in your research, please use the following BibTeX entry for citation:

@inproceedings{gonzalez2021png,
  title={Panoptic Narrative Grounding},
  author={Gonz{\'a}lez, Cristina and Ayobi, Nicol{'\a}s and Hern{\'a}ndez, Isabela and Hern{\'a}ndez, Jose and Pont-Tuset, Jordi and Arbel{\'a}ez, Pablo},
  booktitle={ICCV},
  year={2021}
}
Owner
Biomedical Computer Vision @ Uniandes
Our field of research is computer vision, the area of artificial intelligence seeking automated understanding of visual information
Biomedical Computer Vision @ Uniandes
The first dataset on shadow generation for the foreground object in real-world scenes.

Object-Shadow-Generation-Dataset-DESOBA Object Shadow Generation is to deal with the shadow inconsistency between the foreground object and the backgr

BCMI 105 Dec 30, 2022
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

538 Jan 09, 2023
GAN-based Matrix Factorization for Recommender Systems

GAN-based Matrix Factorization for Recommender Systems This repository contains the datasets' splits, the source code of the experiments and their res

Ervin Dervishaj 9 Nov 06, 2022
Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

Feng 2 Nov 19, 2021
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 110 Dec 27, 2022
[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction

SADRNet Paper link: SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction Requirements python

Multimedia Computing Group, Nanjing University 99 Dec 30, 2022
LSUN Dataset Documentation and Demo Code

LSUN Please check LSUN webpage for more information about the dataset. Data Release All the images in one category are stored in one lmdb database fil

Fisher Yu 426 Jan 02, 2023
The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational Autoencoders".

Open-KG-canonicalization The software associated with a paper accepted at EMNLP 2021 titled "Open Knowledge Graphs Canonicalization using Variational

International Business Machines 13 Nov 11, 2022
PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

411 Dec 16, 2022
Balancing Principle for Unsupervised Domain Adaptation

Blancing Principle for Domain Adaptation NeurIPS 2021 Paper Abstract We address the unsolved algorithm design problem of choosing a justified regulari

Marius-Constantin Dinu 4 Dec 15, 2022
deep-prae

Deep Probabilistic Accelerated Evaluation (Deep-PrAE) Our work presents an efficient rare event simulation methodology for black box autonomy using Im

Safe AI Lab 4 Apr 17, 2021
A pytorch implementation of Detectron. Both training from scratch and inferring directly from pretrained Detectron weights are available.

Use this instead: https://github.com/facebookresearch/maskrcnn-benchmark A Pytorch Implementation of Detectron Example output of e2e_mask_rcnn-R-101-F

Roy 2.8k Dec 29, 2022
Backdoor Attack through Frequency Domain

Backdoor Attack through Frequency Domain DEPENDENCIES python==3.8.3 numpy==1.19.4 tensorflow==2.4.0 opencv==4.5.1 idx2numpy==1.2.3 pytorch==1.7.0 Data

5 Jun 18, 2022
Unsupervised clustering of high content screen samples

Microscopium Unsupervised clustering and dataset exploration for high content screens. See microscopium in action Public dataset BBBC021 from the Broa

60 Dec 05, 2022
Source code for From Stars to Subgraphs

GNNAsKernel Official code for From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness Visualizations GNN-AK(+) GNN-AK(+) with Subgra

44 Dec 19, 2022
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

hippopmonkey 4 Dec 11, 2022
Implementation for paper: Self-Regulation for Semantic Segmentation

Self-Regulation for Semantic Segmentation This is the PyTorch implementation for paper Self-Regulation for Semantic Segmentation, ICCV 2021. Citing SR

Dong ZHANG 30 Nov 21, 2022