PyTorch implementation for ComboGAN

Overview

ComboGAN

This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN)

[ComboGAN Paper]

If you use this code for your research, please cite:

ComboGAN: Unrestrained Scalability for Image Domain Translation Asha Anoosheh, Eirikur Augustsson, Radu Timofte, Luc van Gool In Arxiv, 2017.





Prerequisites

  • Linux or macOS
  • Python 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Getting Started

Installation

  • Install PyTorch and dependencies from http://pytorch.org
  • Install Torch vision from the source.
git clone https://github.com/pytorch/vision
cd vision
python setup.py install
pip install visdom
pip install dominate
  • Clone this repo:
git clone https://github.com/AAnoosheh/ComboGAN.git
cd ComboGAN

ComboGAN training

Our ready datasets can be downloaded using ./datasets/download_dataset.sh .

A pretrained model for the 14-painters dataset can be found HERE. Place under ./checkpoints/ and test using the instructions below, with args --name paint14_pretrained --dataroot ./datasets/painters_14 --n_domains 14 --which_epoch 1150.

Example running scripts can be found in the scripts directory.

  • Train a model:
python train.py --name 
   
     --dataroot ./datasets/
    
      --n_domains 
     
       --niter 
      
        --niter_decay 
        
       
      
     
    
   

Checkpoints will be saved by default to ./checkpoints/ /

  • Fine-tuning/Resume training:
python train.py --continue_train --which_epoch 
   
     --name 
    
      --dataroot ./datasets/
     
       --n_domains 
      
        --niter 
       
         --niter_decay 
         
        
       
      
     
    
   
  • Test the model:
python test.py --phase test --name 
   
     --dataroot ./datasets/
    
      --n_domains 
     
       --which_epoch 
      
        --serial_test

      
     
    
   

The test results will be saved to a html file here: ./results/ / /index.html .

Training/Testing Details

  • Flags: see options/train_options.py for training-specific flags; see options/test_options.py for test-specific flags; and see options/base_options.py for all common flags.
  • Dataset format: The desired data directory (provided by --dataroot) should contain subfolders of the form train*/ and test*/, and they are loaded in alphabetical order. (Note that a folder named train10 would be loaded before train2, and thus all checkpoints and results would be ordered accordingly.)
  • CPU/GPU (default --gpu_ids 0): set--gpu_ids -1 to use CPU mode; set --gpu_ids 0,1,2 for multi-GPU mode. You need a large batch size (e.g. --batchSize 32) to benefit from multiple GPUs.
  • Visualization: during training, the current results and loss plots can be viewed using two methods. First, if you set --display_id > 0, the results and loss plot will appear on a local graphics web server launched by visdom. To do this, you should have visdom installed and a server running by the command python -m visdom.server. The default server URL is http://localhost:8097. display_id corresponds to the window ID that is displayed on the visdom server. The visdom display functionality is turned on by default. To avoid the extra overhead of communicating with visdom set --display_id 0. Secondly, the intermediate results are also saved to ./checkpoints/ /web/index.html . To avoid this, set the --no_html flag.
  • Preprocessing: images can be resized and cropped in different ways using --resize_or_crop option. The default option 'resize_and_crop' resizes the image to be of size (opt.loadSize, opt.loadSize) and does a random crop of size (opt.fineSize, opt.fineSize). 'crop' skips the resizing step and only performs random cropping. 'scale_width' resizes the image to have width opt.fineSize while keeping the aspect ratio. 'scale_width_and_crop' first resizes the image to have width opt.loadSize and then does random cropping of size (opt.fineSize, opt.fineSize).

NOTE: one should not expect ComboGAN to work on just any combination of input and output datasets (e.g. dogs<->houses). We find it works better if two datasets share similar visual content. For example, landscape painting<->landscape photographs works much better than portrait painting <-> landscape photographs.

Owner
Asha Anoosheh
Asha Anoosheh
HDMapNet: A Local Semantic Map Learning and Evaluation Framework

HDMapNet_devkit Devkit for HDMapNet. HDMapNet: A Local Semantic Map Learning and Evaluation Framework Qi Li, Yue Wang, Yilun Wang, Hang Zhao [Paper] [

Tsinghua MARS Lab 421 Jan 04, 2023
El-Gamal on Elliptic Curve (Python)

El-Gamal-on-EC El-Gamal on Elliptic Curve (Python) References: https://docsdrive.com/pdfs/ansinet/itj/2005/299-306.pdf https://arxiv.org/ftp/arxiv/pap

3 May 04, 2022
Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

OoD_Gen-Chest_Xray Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation Requirements (Installations) Install the following libra

Enoch Tetteh 2 Oct 01, 2022
Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite.

TFLite-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite. Stereo depth estimati

Ibai Gorordo 4 Feb 14, 2022
Source code of SIGIR2021 Paper 'One Chatbot Per Person: Creating Personalized Chatbots based on Implicit Profiles'

DHAP Source code of SIGIR2021 Long Paper: One Chatbot Per Person: Creating Personalized Chatbots based on Implicit User Profiles . Preinstallation Fir

ZYMa 32 Dec 06, 2022
A PyTorch implementation of the continual learning experiments with deep neural networks

Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain

182 Dec 27, 2022
Trajectory Extraction of road users via Traffic Camera

Traffic Monitoring Citation The associated paper for this project will be published here as soon as possible. When using this software, please cite th

Julian Strosahl 14 Dec 17, 2022
State-of-the-art data augmentation search algorithms in PyTorch

MuarAugment Description MuarAugment is a package providing the easiest way to a state-of-the-art data augmentation pipeline. How to use You can instal

43 Dec 12, 2022
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
A strongly-typed genetic programming framework for Python

monkeys "If an army of monkeys were strumming on typewriters they might write all the books in the British Museum." monkeys is a framework designed to

H. Chase Stevens 115 Nov 27, 2022
Source code for "Taming Visually Guided Sound Generation" (Oral at the BMVC 2021)

Taming Visually Guided Sound Generation • [Project Page] • [ArXiv] • [Poster] • • Listen for the samples on our project page. Overview We propose to t

Vladimir Iashin 226 Jan 03, 2023
KoRean based ELECTRA pre-trained models (KR-ELECTRA) for Tensorflow and PyTorch

KoRean based ELECTRA (KR-ELECTRA) This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computa

12 Jun 03, 2022
StackNet is a computational, scalable and analytical Meta modelling framework

StackNet This repository contains StackNet Meta modelling methodology (and software) which is part of my work as a PhD Student in the computer science

Marios Michailidis 1.3k Dec 15, 2022
Pre-trained Deep Learning models and demos (high quality and extremely fast)

OpenVINO™ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi

OpenVINO Toolkit 3.4k Dec 31, 2022
Feup-csr - Repository holding my group's submission to the CSR project competition

CSR Competições de Swarm Robotics Swarm Robotics Competitions This repository holds the files submitted for the CSR project competition. Project group

Nuno Pereira 1 Jan 04, 2022
A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

24 Dec 13, 2022
Hierarchical Time Series Forecasting with a familiar API

scikit-hts Hierarchical Time Series with a familiar API. This is the result from not having found any good implementations of HTS on-line, and my work

Carlo Mazzaferro 204 Dec 17, 2022
Using Tensorflow Object Detection API to detect Waymo open dataset

Waymo-2D-Object-Detection Using Tensorflow Object Detection API to detect Waymo open dataset Result CenterNet Training Loss SSD ResNet Training Loss C

76 Dec 12, 2022
Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

C-CNN: Contourlet Convolutional Neural Networks This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networ

Goh Kun Shun (KHUN) 10 Nov 03, 2022