[ACM MM 2021] Diverse Image Inpainting with Bidirectional and Autoregressive Transformers

Related tags

Deep LearningBAT-Fill
Overview

Diverse Image Inpainting with Bidirectional and Autoregressive Transformers

Installation

pip install -r requirements.txt

Dataset Preparation

Given the dataset, please prepare the images paths in a folder named by the dataset with the following folder strcuture.

    flist/dataset_name
        ├── train.flist    # paths of training images
        ├── valid.flist    # paths of validation images
        └── test.flist     # paths of testing images

In this work, we use CelebA-HQ (Download availbale here), Places2 (Download availbale here), ParisStreet View (need author's permission to download)

ImageNet K-means Cluster: The kmeans_centers.npy is downloaded from image-gpt, it's used to quantitize the low-resolution images.

Testing with Pre-trained Models

  1. Download pre-trained models:
  1. Put the pre-trained model under the checkpoints folder, e.g.
    checkpoints
        ├── celebahq_bat_pretrain
            ├── latest_net_G.pth 
  1. Prepare the input images and masks to test.
python bat_sample.py --num_sample [1] --tran_model [bat name] --up_model [upsampler name] --input_dir [dir of input] --mask_dir [dir of mask] --save_dir [dir to save results]

Training New Models

Pretrained VGG model Download from here, move it to models/. This model is used to calculate training loss for the upsampler.

New models can be trained with the following commands.

  1. Prepare dataset. Use --dataroot option to locate the directory of file lists, e.g. ./flist, and specify the dataset name to train with --dataset_name option. Identify the types and mask ratio using --mask_type and --pconv_level options.

  2. Train the transformer.

# To specify your own dataset or settings in the bash file.
bash train_bat.sh

Please note that some of the transformer settings are defined in train_bat.py instead of options/, and this script will take every available gpus for training, please define the GPUs via CUDA_VISIBLE_DEVICES instead of --gpu_ids, which is used for the upsampler.

  1. Train the upsampler.
# To specify your own dataset or settings in the bash file.
bash train_up.sh

The upsampler is typically trained by the low-resolution ground truth, we find that using some samples from the trained BAT might be helpful to improve the performance i.e. PSNR, SSIM. But the sampling process is quite time consuming, training with ground truth also could yield reasonable results.

Citation

If you find this code helpful for your research, please cite our papers.

@inproceedings{yu2021diverse,
  title={Diverse Image Inpainting with Bidirectional and Autoregressive Transformers},
  author={Yu, Yingchen and Zhan, Fangneng and Wu, Rongliang and Pan, Jianxiong and Cui, Kaiwen and Lu, Shijian and Ma, Feiying and Xie, Xuansong and Miao, Chunyan},
  booktitle={Proceedings of the 29th ACM International Conference on Multimedia},
  year={2021}
}

Acknowledgments

This code borrows heavily from SPADE and minGPT, we apprecite the authors for sharing their codes.

Owner
Yingchen Yu
Yingchen Yu
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
【steal piano】GitHub偷情分析工具!

【steal piano】GitHub偷情分析工具! 你是否有这样的困扰,有一天你的仓库被很多人加了star,但是你却不知道这些人都是从哪来的? 别担心,GitHub偷情分析工具帮你轻松解决问题! 原理 GitHub偷情分析工具透过分析star的时间以及他们之间的follow关系,可以推测出每个st

黄巍 442 Dec 21, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023
Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition

Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition Introduction Run attack: SGADV.py Objective function: foolbox/attacks/gradi

1 Jul 18, 2022
Continual reinforcement learning baselines: experiment specifications, implementation of existing methods, and common metrics. Easily extensible to new methods.

Continual Reinforcement Learning This repository provides a simple way to run continual reinforcement learning experiments in PyTorch, including evalu

55 Dec 24, 2022
Modeling CNN layers activity with Gaussian mixture model

GMM-CNN This code package implements the modeling of CNN layers activity with Gaussian mixture model and Inference Graphs visualization technique from

3 Aug 05, 2022
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them

TensorFlow Serving + Streamlit! ✨ 🖼️ Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them! This is a pretty simple S

Álvaro Bartolomé 18 Jan 07, 2023
Rest API Written In Python To Classify NSFW Images.

Rest API Written In Python To Classify NSFW Images.

Wahyusaputra 2 Dec 23, 2021
JumpDiff: Non-parametric estimator for Jump-diffusion processes for Python

jumpdiff jumpdiff is a python library with non-parametric Nadaraya─Watson estimators to extract the parameters of jump-diffusion processes. With jumpd

Rydin 28 Dec 10, 2022
Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

Han Xu 14 Oct 31, 2022
AAAI 2022: Stationary diffusion state neural estimation

Stationary Diffusion State Neural Estimation Although many graph-based clustering methods attempt to model the stationary diffusion state in their obj

绽琨 33 Nov 24, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

VANET Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning" Introduction This is the implementation of article VAN

EMDATA-AILAB 23 Dec 26, 2022
TuckER: Tensor Factorization for Knowledge Graph Completion

TuckER: Tensor Factorization for Knowledge Graph Completion This codebase contains PyTorch implementation of the paper: TuckER: Tensor Factorization f

Ivana Balazevic 296 Dec 06, 2022
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX NCVX: A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning. Please check https://ncvx.org for detailed instruction

SUN Group @ UMN 28 Aug 03, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Thank you for you

Weirui Ye 671 Jan 03, 2023
Unpaired Caricature Generation with Multiple Exaggerations

CariMe-pytorch The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations" CariMe: Unpaired

Gu Zheng 37 Dec 30, 2022