SOLO and SOLOv2 for instance segmentation, ECCV 2020 & NeurIPS 2020.

Overview

SOLO: Segmenting Objects by Locations

This project hosts the code for implementing the SOLO algorithms for instance segmentation.

SOLO: Segmenting Objects by Locations,
Xinlong Wang, Tao Kong, Chunhua Shen, Yuning Jiang, Lei Li
In: Proc. European Conference on Computer Vision (ECCV), 2020
arXiv preprint (arXiv 1912.04488)

SOLOv2: Dynamic and Fast Instance Segmentation,
Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, Chunhua Shen
In: Proc. Advances in Neural Information Processing Systems (NeurIPS), 2020
arXiv preprint (arXiv 2003.10152)

highlights

Highlights

  • Totally box-free: SOLO is totally box-free thus not being restricted by (anchor) box locations and scales, and naturally benefits from the inherent advantages of FCNs.
  • Direct instance segmentation: Our method takes an image as input, directly outputs instance masks and corresponding class probabilities, in a fully convolutional, box-free and grouping-free paradigm.
  • High-quality mask prediction: SOLOv2 is able to predict fine and detailed masks, especially at object boundaries.
  • State-of-the-art performance: Our best single model based on ResNet-101 and deformable convolutions achieves 41.7% in AP on COCO test-dev (without multi-scale testing). A light-weight version of SOLOv2 executes at 31.3 FPS on a single V100 GPU and yields 37.1% AP.

Updates

  • SOLOv2 implemented on detectron2 is released at adet. (07/12/20)
  • Training speeds up (~1.7x faster) for all models. (03/12/20)
  • SOLOv2 is available. Code and trained models of SOLOv2 are released. (08/07/2020)
  • Light-weight models and R101-based models are available. (31/03/2020)
  • SOLOv1 is available. Code and trained models of SOLO and Decoupled SOLO are released. (28/03/2020)

Installation

This implementation is based on mmdetection(v1.0.0). Please refer to INSTALL.md for installation and dataset preparation.

Models

For your convenience, we provide the following trained models on COCO (more models are coming soon). If you need the models in PaddlePaddle framework, please refer to paddlepaddle/README.md.

Model Multi-scale training Testing time / im AP (minival) Link
SOLO_R50_1x No 77ms 32.9 download
SOLO_R50_3x Yes 77ms 35.8 download
SOLO_R101_3x Yes 86ms 37.1 download
Decoupled_SOLO_R50_1x No 85ms 33.9 download
Decoupled_SOLO_R50_3x Yes 85ms 36.4 download
Decoupled_SOLO_R101_3x Yes 92ms 37.9 download
SOLOv2_R50_1x No 54ms 34.8 download
SOLOv2_R50_3x Yes 54ms 37.5 download
SOLOv2_R101_3x Yes 66ms 39.1 download
SOLOv2_R101_DCN_3x Yes 97ms 41.4 download
SOLOv2_X101_DCN_3x Yes 169ms 42.4 download

Light-weight models:

Model Multi-scale training Testing time / im AP (minival) Link
Decoupled_SOLO_Light_R50_3x Yes 29ms 33.0 download
Decoupled_SOLO_Light_DCN_R50_3x Yes 36ms 35.0 download
SOLOv2_Light_448_R18_3x Yes 19ms 29.6 download
SOLOv2_Light_448_R34_3x Yes 20ms 32.0 download
SOLOv2_Light_448_R50_3x Yes 24ms 33.7 download
SOLOv2_Light_512_DCN_R50_3x Yes 34ms 36.4 download

Disclaimer:

  • Light-weight means light-weight backbone, head and smaller input size. Please refer to the corresponding config files for details.
  • This is a reimplementation and the numbers are slightly different from our original paper (within 0.3% in mask AP).

Usage

A quick demo

Once the installation is done, you can download the provided models and use inference_demo.py to run a quick demo.

Train with multiple GPUs

./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM}

Example: 
./tools/dist_train.sh configs/solo/solo_r50_fpn_8gpu_1x.py  8

Train with single GPU

python tools/train.py ${CONFIG_FILE}

Example:
python tools/train.py configs/solo/solo_r50_fpn_8gpu_1x.py

Testing

# multi-gpu testing
./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM}  --show --out  ${OUTPUT_FILE} --eval segm

Example: 
./tools/dist_test.sh configs/solo/solo_r50_fpn_8gpu_1x.py SOLO_R50_1x.pth  8  --show --out results_solo.pkl --eval segm

# single-gpu testing
python tools/test_ins.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --show --out  ${OUTPUT_FILE} --eval segm

Example: 
python tools/test_ins.py configs/solo/solo_r50_fpn_8gpu_1x.py  SOLO_R50_1x.pth --show --out  results_solo.pkl --eval segm

Visualization

python tools/test_ins_vis.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --show --save_dir  ${SAVE_DIR}

Example: 
python tools/test_ins_vis.py configs/solo/solo_r50_fpn_8gpu_1x.py  SOLO_R50_1x.pth --show --save_dir  work_dirs/vis_solo

Contributing to the project

Any pull requests or issues are welcome.

Citations

Please consider citing our papers in your publications if the project helps your research. BibTeX reference is as follows.

@inproceedings{wang2020solo,
  title     =  {{SOLO}: Segmenting Objects by Locations},
  author    =  {Wang, Xinlong and Kong, Tao and Shen, Chunhua and Jiang, Yuning and Li, Lei},
  booktitle =  {Proc. Eur. Conf. Computer Vision (ECCV)},
  year      =  {2020}
}

@article{wang2020solov2,
  title={SOLOv2: Dynamic and Fast Instance Segmentation},
  author={Wang, Xinlong and Zhang, Rufeng and  Kong, Tao and Li, Lei and Shen, Chunhua},
  journal={Proc. Advances in Neural Information Processing Systems (NeurIPS)},
  year={2020}
}

License

For academic use, this project is licensed under the 2-clause BSD License - see the LICENSE file for details. For commercial use, please contact Xinlong Wang and Chunhua Shen.

Owner
Xinlong Wang
Xinlong Wang
Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection"

Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection". LRPDenseNet.py

Pedro Ricardo Ariel Salvador Bassi 2 Sep 21, 2022
Real life contra a deep learning project built using mediapipe and openc

real-life-contra Description A python script that translates the body movement into in game control. Welcome to all new real life contra a deep learni

Programminghut 7 Jan 26, 2022
Code for “ACE-HGNN: Adaptive Curvature ExplorationHyperbolic Graph Neural Network”

ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network This repository is the implementation of ACE-HGNN in PyTorch. Environment pyt

9 Nov 28, 2022
Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Phil Wang 180 Jan 05, 2023
Codes for "Template-free Prompt Tuning for Few-shot NER".

EntLM The source codes for EntLM. Dependencies: Cuda 10.1, python 3.6.5 To install the required packages by following commands: $ pip3 install -r requ

77 Dec 27, 2022
The Official TensorFlow Implementation for SPatchGAN (ICCV2021)

SPatchGAN: Official TensorFlow Implementation Paper "SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation"

39 Dec 30, 2022
A Pytree Module system for Deep Learning in JAX

Treex A Pytree-based Module system for Deep Learning in JAX Intuitive: Modules are simple Python objects that respect Object-Oriented semantics and sh

Cristian Garcia 216 Dec 20, 2022
List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.

deepfake-models List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, Si

Mingcan Xiang 100 Dec 17, 2022
The fundamental package for scientific computing with Python.

NumPy is the fundamental package needed for scientific computing with Python. Website: https://www.numpy.org Documentation: https://numpy.org/doc Mail

NumPy 22.4k Jan 09, 2023
This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021.

Open Rule Induction This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021. Abstract Rule

Xingran Chen 16 Nov 14, 2022
A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

Korbinian Pöppel 47 Nov 28, 2022
Combine Tacotron2 and Hifi GAN to generate speech from text

EndToEndTextToSpeech Combine Tacotron2 and Hifi GAN to generate speech from text Download weights Hifi GAN - hifi_gan/checkpoint/ : pretrain 2.5M ste

Phạm Quốc Huy 1 Dec 18, 2021
Mini-hmc-jax - A simple implementation of Hamiltonian Monte Carlo in JAX

mini-hmc-jax This is a simple implementation of Hamiltonian Monte Carlo in JAX t

Martin Marek 6 Mar 03, 2022
An onlinel learning to rank python codebase.

OLTR Online learning to rank python codebase. The code related to Pairwise Differentiable Gradient Descent (ranker/PDGDLinearRanker.py) is copied from

ielab 5 Jul 18, 2022
Official codes: Self-Supervised Learning by Estimating Twin Class Distribution

TWIST: Self-Supervised Learning by Estimating Twin Class Distributions Codes and pretrained models for TWIST: @article{wang2021self, title={Self-Sup

Bytedance Inc. 85 Dec 15, 2022
Learning to Stylize Novel Views

Learning to Stylize Novel Views [Project] [Paper] Contact: Hsin-Ping Huang ([ema

34 Nov 27, 2022
Transfer-Learn is an open-source and well-documented library for Transfer Learning.

Transfer-Learn is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consist

THUML @ Tsinghua University 2.2k Jan 03, 2023
Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).

Robust On-Policy Data Collection for Data-Efficient Policy Evaluation Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evalua

Autonomous Agents Research Group (University of Edinburgh) 2 Oct 09, 2022
《Lerning n Intrinsic Grment Spce for Interctive Authoring of Grment Animtion》

Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation Overview This is the demo code for training a motion invariant enco

YuanBo 213 Dec 14, 2022
[ICCV 2021 Oral] SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer

This repository contains the source code for the paper SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer (ICCV 2021 Oral). The project page is here.

AllenXiang 65 Dec 26, 2022