EOD Historical Data Python Library (Unofficial)

Overview

EOD Historical Data Python Library (Unofficial)

https://eodhistoricaldata.com

Installation

python3 -m pip install eodhistoricaldata

Note

Demo API key below is provided by EOD Historial Data for testing purposes https://eodhistoricaldata.com/financial-apis/new-real-time-data-api-websockets

Usage

None: """Main""" websocket = WebSocketClient( # Demo API key for testing purposes api_key="OeAFFmMliFG5orCUuwAKQ8l4WWFQ67YX", endpoint="crypto", symbols=["BTC-USD"] #api_key="OeAFFmMliFG5orCUuwAKQ8l4WWFQ67YX", endpoint="forex", symbols=["EURUSD"] #api_key="OeAFFmMliFG5orCUuwAKQ8l4WWFQ67YX", endpoint="us", symbols=["AAPL"] ) websocket.start() message_count = 0 while True: if websocket: if ( message_count != websocket.message_count ): print(websocket.message) message_count = websocket.message_count sleep(0.25) # output every 1/4 second, websocket is realtime if __name__ == "__main__": main() ">
"""Sample script"""

from time import sleep
from eodhistoricaldata import WebSocketClient

def main() -> None:
    """Main"""

    websocket = WebSocketClient(
        # Demo API key for testing purposes
        api_key="OeAFFmMliFG5orCUuwAKQ8l4WWFQ67YX", endpoint="crypto", symbols=["BTC-USD"]
        #api_key="OeAFFmMliFG5orCUuwAKQ8l4WWFQ67YX", endpoint="forex", symbols=["EURUSD"]
        #api_key="OeAFFmMliFG5orCUuwAKQ8l4WWFQ67YX", endpoint="us", symbols=["AAPL"]
    )
    websocket.start()

    message_count = 0
    while True:
        if websocket:
            if (
                message_count != websocket.message_count
            ):
                print(websocket.message)
                message_count = websocket.message_count
                sleep(0.25)  # output every 1/4 second, websocket is realtime

if __name__ == "__main__":
    main()
You might also like...
TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI) data
TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI) data

tedana: TE Dependent ANAlysis TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI)

Hatchet is a Python-based library that allows Pandas dataframes to be indexed by structured tree and graph data.
Hatchet is a Python-based library that allows Pandas dataframes to be indexed by structured tree and graph data.

Hatchet Hatchet is a Python-based library that allows Pandas dataframes to be indexed by structured tree and graph data. It is intended for analyzing

 🧪 Panel-Chemistry - exploratory data analysis and build powerful data and viz tools within the domain of Chemistry using Python and HoloViz Panel.
🧪 Panel-Chemistry - exploratory data analysis and build powerful data and viz tools within the domain of Chemistry using Python and HoloViz Panel.

🧪📈 🐍. The purpose of the panel-chemistry project is to make it really easy for you to do DATA ANALYSIS and build powerful DATA AND VIZ APPLICATIONS within the domain of Chemistry using using Python and HoloViz Panel.

Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code

Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code. Tuplex has similar Python APIs to Apache Spark or Dask, but rather than invoking the Python interpreter, Tuplex generates optimized LLVM bytecode for the given pipeline and input data set.

Python data processing, analysis, visualization, and data operations

Python This is a Python data processing, analysis, visualization and data operations of the source code warehouse, book ISBN: 9787115527592 Descriptio

Catalogue data - A Python Scripts to prepare catalogue data

catalogue_data Scripts to prepare catalogue data. Setup Clone this repo. Install

fds is a tool for Data Scientists made by DAGsHub to version control data and code at once.
fds is a tool for Data Scientists made by DAGsHub to version control data and code at once.

Fast Data Science, AKA fds, is a CLI for Data Scientists to version control data and code at once, by conveniently wrapping git and dvc

A data parser for the internal syncing data format used by Fog of World.
A data parser for the internal syncing data format used by Fog of World.

A data parser for the internal syncing data format used by Fog of World. The parser is not designed to be a well-coded library with good performance, it is more like a demo for showing the data structure.

Functional Data Analysis, or FDA, is the field of Statistics that analyses data that depend on a continuous parameter.
Comments
  • Syntax issue with query Parameter in get_calendar_ functions

    Syntax issue with query Parameter in get_calendar_ functions

    Hello,

    When using the get_calendar_XXX, functions we cannot use the query parameters defined by EOD as the word "from" is forbidden by Python, for instance : earning=client.get_calendar_earnings(from='2022-11-01', to='2022-11-30')

    will raise an issue.

    Should I pass the argument differently ?

    opened by ATCBGroup 1
  • dependency on matplotlib but it is not installed with pip

    dependency on matplotlib but it is not installed with pip

    dependency on matplotlib but it is not installed with pip

    [email protected]:~/git/traderai/eod$ cat test.py
    from eodhd import APIClient
    api = APIClient("DEMO")
    
    [email protected]:~/git/traderai/eod$ python3 test.py
    Traceback (most recent call last):
      File "/home/mshamber/.local/lib/python3.8/site-packages/eodhd/eodhdgraphs.py", line 5, in <module>
        import matplotlib.pyplot as plt
    ModuleNotFoundError: No module named 'matplotlib'
    
    [email protected]:~/git/traderai/eod$ python3 -m pip install eodhd
    Requirement already satisfied: eodhd in /home/mshamber/.local/lib/python3.8/site-packages (1.0.8)
    Requirement already satisfied: websocket-client==1.3.3 in /home/mshamber/.local/lib/python3.8/site-packages (from eodhd) (1.3.3)
    Requirement already satisfied: rich==12.5.1 in /home/mshamber/.local/lib/python3.8/site-packages (from eodhd) (12.5.1)
    Requirement already satisfied: websockets==10.3 in /home/mshamber/.local/lib/python3.8/site-packages (from eodhd) (10.3)
    Requirement already satisfied: numpy==1.21.6 in /home/mshamber/.local/lib/python3.8/site-packages (from eodhd) (1.21.6)
    Requirement already satisfied: pandas==1.3.5 in /home/mshamber/.local/lib/python3.8/site-packages (from eodhd) (1.3.5)
    Requirement already satisfied: requests==2.28.1 in /home/mshamber/.local/lib/python3.8/site-packages (from eodhd) (2.28.1)
    Requirement already satisfied: commonmark<0.10.0,>=0.9.0 in /home/mshamber/.local/lib/python3.8/site-packages (from rich==12.5.1->eodhd) (0.9.1)
    Requirement already satisfied: typing-extensions<5.0,>=4.0.0; python_version < "3.9" in /home/mshamber/.local/lib/python3.8/site-packages (from rich==12.5.1->eodhd) (4.3.0)
    Requirement already satisfied: pygments<3.0.0,>=2.6.0 in /home/mshamber/.local/lib/python3.8/site-packages (from rich==12.5.1->eodhd) (2.13.0)
    Requirement already satisfied: python-dateutil>=2.7.3 in /home/mshamber/.local/lib/python3.8/site-packages (from pandas==1.3.5->eodhd) (2.8.2)
    Requirement already satisfied: pytz>=2017.3 in /home/mshamber/.local/lib/python3.8/site-packages (from pandas==1.3.5->eodhd) (2022.5)
    Requirement already satisfied: charset-normalizer<3,>=2 in /home/mshamber/.local/lib/python3.8/site-packages (from requests==2.28.1->eodhd) (2.1.1)
    Requirement already satisfied: idna<4,>=2.5 in /usr/lib/python3/dist-packages (from requests==2.28.1->eodhd) (2.8)
    Requirement already satisfied: certifi>=2017.4.17 in /usr/lib/python3/dist-packages (from requests==2.28.1->eodhd) (2019.11.28)
    Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/lib/python3/dist-packages (from requests==2.28.1->eodhd) (1.25.8)
    Requirement already satisfied: six>=1.5 in /home/mshamber/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas==1.3.5->eodhd) (1.16.0)
    
    opened by opme 1
Releases(1.0.8)
Owner
Michael Whittle
Solution Architect
Michael Whittle
This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks

This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks

Donald F. Ferguson 4 Mar 06, 2022
My first Python project is a simple Mad Libs program.

Python CLI Mad Libs Game My first Python project is a simple Mad Libs program. Mad Libs is a phrasal template word game created by Leonard Stern and R

Carson Johnson 1 Dec 10, 2021
Intake is a lightweight package for finding, investigating, loading and disseminating data.

Intake: A general interface for loading data Intake is a lightweight set of tools for loading and sharing data in data science projects. Intake helps

Intake 851 Jan 01, 2023
Semi-Automated Data Processing

Perform semi automated exploratory data analysis, feature engineering and feature selection on provided dataset by visualizing every possibilities on each step and assisting the user to make a meanin

Arun Singh Babal 1 Jan 17, 2022
Python script to automate the plotting and analysis of percentage depth dose and dose profile simulations in TOPAS.

topas-create-graphs A script to automatically plot the results of a topas simulation Works for percentage depth dose (pdd) and dose profiles (dp). Dep

Sebastian Schäfer 10 Dec 08, 2022
A data analysis using python and pandas to showcase trends in school performance.

A data analysis using python and pandas to showcase trends in school performance. A data analysis to showcase trends in school performance using Panda

Jimmy Faccioli 0 Sep 07, 2021
General Assembly's 2015 Data Science course in Washington, DC

DAT8 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (8/18/15 - 10/29/15). Instructor: Kevin Markham (

Kevin Markham 1.6k Jan 07, 2023
Mining the Stack Overflow Developer Survey

Mining the Stack Overflow Developer Survey A prototype data mining application to compare the accuracy of decision tree and random forest regression m

1 Nov 16, 2021
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
The lastest all in one bombing tool coded in python uses tbomb api

BaapG-Attack is a python3 based script which is officially made for linux based distro . It is inbuit mass bomber with sms, mail, calls and many more bombing

59 Dec 25, 2022
In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift.

ETL Pipeline for AWS Project Description In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift. The data is loaded from S3 t

Mobeen Ahmed 1 Nov 01, 2021
A Python and R autograding solution

Otter-Grader Otter Grader is a light-weight, modular open-source autograder developed by the Data Science Education Program at UC Berkeley. It is desi

Infrastructure Team 93 Jan 03, 2023
An Integrated Experimental Platform for time series data anomaly detection.

Curve Sorry to tell contributors and users. We decided to archive the project temporarily due to the employee work plan of collaborators. There are no

Baidu 486 Dec 21, 2022
Top 50 best selling books on amazon

It's a dashboard that shows the detailed information about each book in the top 50 best selling books on amazon over the last ten years

Nahla Tarek 1 Nov 18, 2021
Automatic earthquake catalog building workflow: EQTransformer + Siamese EQTransformer + PickNet + REAL + HypoInverse

Automatic regional-scale earthquake catalog building workflow: EQTransformer + Siamese EQTransforme

Xiao Zhuowei 9 Nov 27, 2022
API>local_db>AWS_RDS - Disclaimer! All data used is for educational purposes only.

APIlocal_dbAWS_RDS Disclaimer! All data used is for educational purposes only. ETL pipeline diagram. Aim of project By creating a fully working pipe

0 Apr 25, 2022
pyETT: Python library for Eleven VR Table Tennis data

pyETT: Python library for Eleven VR Table Tennis data Documentation Documentation for pyETT is located at https://pyett.readthedocs.io/. Installation

Tharsis Souza 5 Nov 19, 2022
Weather analysis with Python, SQLite, SQLAlchemy, and Flask

Surf's Up Weather analysis with Python, SQLite, SQLAlchemy, and Flask Overview The purpose of this analysis was to examine weather trends (precipitati

Art Tucker 1 Sep 05, 2021
Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Damien Farrell 81 Dec 26, 2022
[CVPR2022] This repository contains code for the paper "Nested Collaborative Learning for Long-Tailed Visual Recognition", published at CVPR 2022

Nested Collaborative Learning for Long-Tailed Visual Recognition This repository is the official PyTorch implementation of the paper in CVPR 2022: Nes

Jun Li 65 Dec 09, 2022